【2020秋招】内推批腾讯机器学习方向面试经验

铺垫

时间:周二中午11:00
形式:电话面试,本来让我去现场,后来我一想,我也没本事被面上,所以就随便面面吧,就改成了电话面,然后面试官就不怎么高兴了,他说让我尽量去sigma大厦去面试,但是还是被我拒绝了= =。
面试体验:全程电话面试,不涉及任何算法题、算法原理公式推导,第一次被女面试官面试,他让我讲项目的时候他就心不在焉吧,我说过的问题他还是在问我一遍,我觉得他是因为我没去现场面试怀恨在心了= =

问题&答案

  1. 问项目,扣得很细,会问你项目的落地细节
  2. LSTM和RNN相比的区别在哪里?为什么LSTM可以解决梯度爆炸或者梯度消失问题?它是如何解决的?(相当高频的题目,必须得掌握)
    1. 区别:
      1. RNN没有细胞状态;LSTM通过细胞状态记忆信息。
      2. RNN激活函数只有tanh;LSTM通过输入门、遗忘门、输出门引入sigmoid函数并结合tanh函数,添加求和操作,减少梯度消失和梯度爆炸的可能性。
        tanh(x) = 2sigmoid(2x)-1
      3. RNN只能够处理短期依赖问题;LSTM既能够处理短期依赖问题,又能够处理长期依赖问题。
    2. 为什么LSTM可以解决梯度爆炸或者梯度消失问题?
      弄懂这个就可以了:https://www.cnblogs.com/bonelee/p/10475453.html
      重点理解RNN产生梯度爆炸的根源,LSTM针对这个问题,作了那些改进。
      在这里插入图片描述
  3. 朴素贝叶斯公式
    在这里插入图片描述
BAT机器学习面试1000题系列 1 前言 1 BAT机器学习面试1000题系列 2 1 归一化为什么能提高梯度下降法求解最优解的速度? 22 2 归一化有可能提高精度 22 3 归一化的类型 23 1)线性归一化 23 2)标准差标准化 23 3)非线性归一化 23 35. 什么是熵。机器学习 ML基础 易 27 熵的引入 27 3.1 无偏原则 29 56. 什么是卷积。深度学习 DL基础 易 38 池化,简言之,即取区域平均或最大,如下图所示(图引自cs231n) 40 随机梯度下降 46 量梯度下降 47 随机梯度下降 48 具体步骤: 50 引言 72 1. 深度有监督学习在计算机视觉领域的进展 73 1.1 图像分类(Image Classification) 73 1.2 图像检测(Image Dection) 73 1.3 图像分割(Semantic Segmentation) 74 1.4 图像标注–看图说话(Image Captioning) 75 1.5 图像生成–文字转图像(Image Generator) 76 2.强化学习(Reinforcement Learning) 77 3深度无监督学习(Deep Unsupervised Learning)–预测学习 78 3.1条件生成对抗网络(Conditional Generative Adversarial Nets,CGAN) 79 3.2 视频预测 82 4 总结 84 5 参考文献 84 一、从单层网络谈起 96 二、经典的RNN结构(N vs N) 97 三、N VS 1 100 四、1 VS N 100 五、N vs M 102 Recurrent Neural Networks 105 长期依赖(Long-Term Dependencies)问题 106 LSTM 网络 106 LSTM 的核心思想 107 逐步理解 LSTM 108 LSTM 的变体 109 结论 110 196. L1与L2范数。机器学习 ML基础 易 163 218. 梯度下降法的神经网络容易收敛到局部最优,为什么应用广泛?深度学习 DL基础 中 178 @李振华,https://www.zhihu.com/question/68109802/answer/262143638 179 219. 请比较下EM算法、HMM、CRF。机器学习 ML模型 中 179 223. Boosting和Bagging 181 224. 逻辑回归相关问题 182 225. 用贝叶斯机率说明Dropout的原理 183 227. 什么是共线性, 跟过拟合有什么关联? 184 共线性:多变量线性回归中,变量之间由于存在高度相关关系而使回归估计不准确。 184 共线性会造成冗余,导致过拟合。 184 解决方法:排除变量的相关性/加入权重正则。 184 勘误记 216 后记 219
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值