算法关系梳理

机器学习解决的问题可以分为两类:回归和分类

所谓回归就是预测模型的最优参数,其步骤一般为:

(1)根据最大似然(MLE),最大后验(MAP)或最小误差准则建立目标函数。最大似然函数比较好理解,贝叶斯准则是利用的最大后验准则。

(2)借助优化方法,找到模型中的最优参数。常见的优化方法有:最小二乘方法、EM方法、梯度下降法(一阶泰勒展开)、梯度上升法、随机梯度下降法、牛顿法(二阶展开)。其中最小二乘法是从极大似然准则出发以高斯模型为假设前提导出的目标函数。GMM(高斯混合模型)也是从极大似然函数出发,结合了最大后验概率的目标函数,优化求解时使用了EM方法。



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值