数据格式(定点表示 浮点表示)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/alinyua/article/details/79716094

计算机常用的数据表示格式有两种:

  • 定点表示:小数点位置固定(数值范围有限)
  • 浮点表示:小数点位置不固定(数值范围很大)

定点表示

  • 概念:所有数据的小数点位置固定不变
  • 表示方法:符号位+量值(尾数)
  • 特点:
    数的范围受字长限制,表示数的范围有限;
    计算机中多用定点纯整数表示,所以将定点数表示的运算简称为整数运算
  • 分类:理论上小数点位置可以任意,但实际上将数据表示成如下两种形式
    1. 纯小数(小数点固定在量值最高位的左边,即符号位与量值之间)
      表示范围(量值为n位时): 0|x|12n
      定点纯小数
    2. 纯整数(小数点固定在量值最低位的右边)
      表示范围(量值为n位时): 0|x|2n1
      定点纯整数

浮点表示

  • 概念:小数点位置随阶码不同而浮动
  • 表示方法:

    • 核心
      任意一个二进制数N可以写成 N=2e.M (如同任意一个十进制数N可以写成N=10e.M )
      其中 e 是浮点数的指数,M 是浮点数的尾数,两者都是有符号的
      指数= 阶符+阶码
      尾数= 数符+尾数
    • 机器中的表示(早期的计算机中)
      阶符+阶码+数符+尾数
    • IEEE754标准(规定了浮点数的表示格式,运算规则等)
      基数2是固定常数,故可不表示出来
      尾数用原码,但指数用移码(便于对阶和比较,不需要判断符号位),指数的阶符被隐含在移码里面,故可不表示出来
      浮点数的规格化表示: 当尾数的值不为0时,尾数域的最高有效位应为1(类似于0.011强制要求用1.122表示),又因为最高位固定为1,即尾数域表示的值是1.M,故最高位的1也不予存储.
      要除去E用全0和全1表示零和无穷大的情况,如本来是0~255则变成1~254
      • 单精度(32位)
        单精度
        • S是数的符号位1位,在最高位,“0”表示正数,“1”表示负数
          尾数用原码表示,故符号规则同原码
        • M尾数23位,在低位部分,采用纯小数表示
          注意这里是规格化表示的,即23位字段实际存储24位有效数
        • E阶码8位,采用移码表示。
          真值e变为阶码E时加上固定的偏移量127,即E=e+127
          移码比较大小方便,表示范围从-126~+127移动到1~254
      • 双精度(64位)
        双精度
        • S是数的符号位1位,在最高位,“0”表示正数,“1”表示负数
          尾数用原码表示,故符号规则同原码
        • M尾数52位,在低位部分,采用纯小数表示
          注意这里是规格化表示的,即52位字段实际存储53位有效数
        • E阶码11位,采用移码表示。
          真值e变为阶码E时加上固定的偏移量1023,即E=e+1023
          移码比较大小方便,表示范围从-1022~+1023移动到1~2046
  • 表示范围

单精度(32位)指数 单精度(32位)尾数 双精度(64位)指数 双精度(64位)尾数 表示的对象
0 0 0 0 0(结合符号位有正零和负零之分)
0 非0 0 非0 正负规格化数
1~254 任意数 1~2046 任意数 正负浮点数
255 0 2047 0 正负无穷
255 非0 2047 非0 不是一个数(NaN)
  • 例1(十进制数转浮点数)
    十进制(20.59375)10数 转换成 754标准的浮点数(32位)的二进制存储格式
    1. 分别将整数和分数部分转换成二进制数
      20.59375=10100.10011
    2. 移动小数点,使其在第1,2位之间(格式化浮点数,小数点在最高位的1后)
      10100.10011=1.010010011×24
    3. 由真值e加偏移量(32位为127,64位为1023)得阶码E
      E=e+127=4+127=131=10000011
      S=0
      M=010010011
    4. 得32位浮点数的二进制存储格式(不满32位后面要补0)
      0100 0001 1010 0100 1100 0000 0000 0000=(41A4C000)16
  • 例2(浮点数转十进制数)
    754标准存储格式为(41360000)16的浮点数 转 十进制数
    1. 将数展开,用二进制格式表示
      得,0 100 00010 011 0110 0000 0000 0000 0000
    2. 根据对应位置,得
      S=0
      e=E127=1000001001111111=00000011=(3)10
      尾数补回隐藏位1,得
      1.M=1.01101100000000000000000=1.011011
      故十进制数为
      (1)s×1.M×2e=+(1.011011)×23=+1011.011=(11.375)10
展开阅读全文

没有更多推荐了,返回首页