计算机常用的数据表示格式有两种:
- 定点表示:小数点位置固定(数值范围有限)
- 浮点表示:小数点位置不固定(数值范围很大)
定点表示
- 概念:所有数据的小数点位置固定不变
- 表示方法:符号位+量值(尾数)
- 特点:
数的范围受字长限制,表示数的范围有限;
计算机中多用定点纯整数表示,所以将定点数表示的运算简称为整数运算 - 分类:理论上小数点位置可以任意,但实际上将数据表示成如下两种形式
- 纯小数(小数点固定在量值最高位的左边,即符号位与量值之间)
表示范围(量值为n位时): 0≤|x|≤1−2−n 0 ≤ | x | ≤ 1 − 2 − n
- 纯整数(小数点固定在量值最低位的右边)
表示范围(量值为n位时): 0≤|x|≤2n−1 0 ≤ | x | ≤ 2 n − 1
- 纯小数(小数点固定在量值最高位的左边,即符号位与量值之间)
浮点表示
- 概念:小数点位置随阶码不同而浮动
表示方法:
- 核心
任意一个二进制数N可以写成 N=2e.M N = 2 e . M (如同任意一个十进制数N可以写成 N=10e.M N = 10 e . M )
其中 e e 是浮点数的指数, 是浮点数的尾数,两者都是有符号的
指数= 阶符+阶码
尾数= 数符+尾数 - 机器中的表示(早期的计算机中)
阶符+阶码+数符+尾数 - IEEE754标准(规定了浮点数的表示格式,运算规则等)
基数2是固定常数,故可不表示出来
尾数用原码,但指数用移码(便于对阶和比较,不需要判断符号位),指数的阶符被隐含在移码里面,故可不表示出来
浮点数的规格化表示: 当尾数的值不为0时,尾数域的最高有效位应为1(类似于0.011强制要求用 1.1∗2−2 1.1 ∗ 2 − 2 表示),又因为最高位固定为1,即尾数域表示的值是1.M,故最高位的1也不予存储.
要除去E用全0和全1表示零和无穷大的情况,如本来是0~255则变成1~254
- 单精度(32位)
- S是数的符号位,1位,在最高位,“0”表示正数,“1”表示负数
尾数用原码表示,故符号规则同原码 - M是尾数, 23位,在低位部分,采用纯小数表示
注意这里是规格化表示的,即23位字段实际存储24位有效数 - E是阶码,8位,采用移码表示。
真值e变为阶码E时加上固定的偏移量127,即 E=e+127 E = e + 127
移码比较大小方便,表示范围从-126~+127移动到1~254
- S是数的符号位,1位,在最高位,“0”表示正数,“1”表示负数
- 双精度(64位)
- S是数的符号位,1位,在最高位,“0”表示正数,“1”表示负数
尾数用原码表示,故符号规则同原码 - M是尾数, 52位,在低位部分,采用纯小数表示
注意这里是规格化表示的,即52位字段实际存储53位有效数 - E是阶码,11位,采用移码表示。
真值e变为阶码E时加上固定的偏移量1023,即 E=e+1023 E = e + 1023
移码比较大小方便,表示范围从-1022~+1023移动到1~2046
- S是数的符号位,1位,在最高位,“0”表示正数,“1”表示负数
- 单精度(32位)
- 核心
表示范围
单精度(32位)指数 | 单精度(32位)尾数 | 双精度(64位)指数 | 双精度(64位)尾数 | 表示的对象 |
---|---|---|---|---|
0 | 0 | 0 | 0 | 0(结合符号位有正零和负零之分) |
0 | 非0 | 0 | 非0 | 正负规格化数 |
1~254 | 任意数 | 1~2046 | 任意数 | 正负浮点数 |
255 | 0 | 2047 | 0 | 正负无穷 |
255 | 非0 | 2047 | 非0 | 不是一个数(NaN) |
- 例1(十进制数转浮点数)
十进制 (20.59375)10 ( 20.59375 ) 10 数 转换成 754标准的浮点数(32位)的二进制存储格式
- 分别将整数和分数部分转换成二进制数
得 20.59375=10100.10011 20.59375 = 10100.10011 - 移动小数点,使其在第1,2位之间(格式化浮点数,小数点在最高位的1后)
得 10100.10011=1.010010011×24 10100.10011 = 1.010010011 × 2 4 - 由真值e加偏移量(32位为127,64位为1023)得阶码E
E=e+127=4+127=131=10000011 E = e + 127 = 4 + 127 = 131 = 10000011
S=0 S = 0
M=010010011 M = 010010011 - 得32位浮点数的二进制存储格式(不满32位后面要补0)
0100 0001 1010 0100 1100 0000 0000 0000= (41A4C000)16 ( 41 A 4 C 000 ) 16
- 分别将整数和分数部分转换成二进制数
- 例2(浮点数转十进制数)
754标准存储格式为 (41360000)16 ( 41360000 ) 16 的浮点数 转 十进制数
- 将数展开,用二进制格式表示
得,0 100 00010 011 0110 0000 0000 0000 0000 - 根据对应位置,得
S=0 S = 0
e=E−127=10000010−01111111=00000011=(3)10 e = E − 127 = 10000010 − 01111111 = 00000011 = ( 3 ) 10
尾数补回隐藏位1,得
1.M=1.01101100000000000000000=1.011011 1. M = 1.011 0110 0000 0000 0000 0000 = 1.011011
故十进制数为
(−1)s×1.M×2e=+(1.011011)×23=+1011.011=(11.375)10 ( − 1 ) s × 1. M × 2 e = + ( 1.011011 ) × 2 3 = + 1011.011 = ( 11.375 ) 10
- 将数展开,用二进制格式表示