R语言实现viterbi算法

本文介绍了如何使用R语言实现隐马尔科夫模型(HMM)中的Viterbi算法。作者首先解释了数据集来源,然后详细说明了算法的输入输出,包括转移概率矩阵(tp)、发射概率矩阵(ep)和起始状态概率向量(startp)。通过计算这些参数,实现了对观察序列的标注。最后,文章提到了输出结果是一个矩阵,用于表示每个单词对应各个标签的概率,从而确定最佳标签路径。
摘要由CSDN通过智能技术生成

数据集介绍

最近初学HMM(Hidden Markov Model),老师让我自己试着用Java去实现viterbi算法,结果试了一下,发现数据的输入太麻烦,因为数据集是一些各种字符串和标点符号的矩阵吧,然后才开始学习R语言的, 首先先看看数据集。

http://www.clips.uantwerpen.be/conll2000/chunking/

数据集是从上面这个网站下载的,有一个train.txt还有一个test.txt。

格式大概如下:

   He        PRP  B-NP
   reckons   VBZ  B-VP
   the       DT   B-NP
   current   JJ   I-NP
   account   NN   I-NP
   deficit   NN   I-NP
   will      MD   B-VP
   narrow    VB   I-VP
   to        TO   B-PP
   only      RB   B-NP
   #         #    I-NP
   1.8       CD   I-NP
   billion   CD   I-NP
   in        IN   B-PP
   September NNP  B-NP
   .         .    O
这是一整句话的数据。 第一列我们称为symbol或者是word,第二列称为tag或者是标签(tag又称作状态state),第三列在这个算法中没用到,所以先不提及。
 
然后首先要知道viterbi算法的输入和输出,

算法输入输出

 

Input:

tp: transition probability matrix  (不同tag之间的转移概率矩阵, tp[i,j]表示从第i个标签,下一个单词的标签是第j个标签的概率 )

ep: emission probability matrix (表示tag和word之间的发射概率矩阵,ep[v,k]表示第v个标签下,这个标签会输出第k个单词(word/symbol)的概率 )

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Allan Jie

希望能和大家一起提升技能

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值