Keras 实现 LSTM

本文档介绍了如何使用Keras实现LSTM模型进行时间序列预测。项目涉及真实业界数据,包括多组时间序列和外部特征,旨在建立多时序协同预测系统。数据集涵盖日期、气温和湿度等信息,通过数据预处理、模型训练和预测,展示时序预测问题的解决流程。最终,模型预测效果良好。
摘要由CSDN通过智能技术生成

所用项目和数据集来自:真实业界数据的时间序列预测挑战

1 项目简单介绍

1.1 背景介绍

本项目的目标是建立内部与外部特征结合的多时序协同预测系统。数据集采用来自业界多组相关时间序列(约40组)与外部特征时间序列(约5组)。课题通过进行数据探索,特征工程,传统时序模型探索,机器学习模型探索,深度学习模型探索(RNN,LSTM等),算法结合,结果分析等步骤来学习时序预测问题的分析方法与实战流程。

1.2 数据集说明

** 训练数据有8列:**

- 日期 - 年: int
- 日期 - 月: int
- 日期 - 日: int, 时间跨度为2015年2月1日 - 2016年8月31日
- 当日最高气温 - 摄氏度(下同): float
- 当日最低气温: float
- 当日平均气温: float
- 当日平均湿度: float
- 输出 - float
预测数据没有输出部分,其他与预测一样。时间跨度为2016年9月1日 - 2016年11月30日
训练与预测都各自包含46组数据,每组数据代表不同数据源,组之间的温度与湿度信息一样而输出不同.

2 导入库并读取查看数据

#查看其中一个地区的训练数据
import pandas as pd
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, LSTM, Dropout
import matplotlib.pyplot as plt
% matplotlib inline
import glob, os
import seaborn as sns
import sys
from sklearn.preprocessing import MinMaxScaler
columns = ['YEAR','MONTH','DAY','TEMP_HIG','TEMP_COL','AVG_TEMP','AVG_WET','DATA_COL']
data = pd.read_csv('../input/industry/industry_timeseries/timeseries_train_data/1.csv', 
                      names=columns)
data.head()

# 查看数据采集区1的数据
plt.figure(figsize=(24,8))
for i in range(8):
    plt.subplot(8, 1, i+1)
    plt.plot(data.values[:, i])
    plt.title(columns[i], y=0.5, loc='right')
plt.show() 

3 数据预处理

3.1 时间序列数据转化为监督问题数据

def series_to_supervised(data, n_in=1, n_out=1, dropnan=True):
    n_vars = 1 if type(data) is list else data.shape[1]
    df = pd.DataFrame(data)
    cols, names = list(), list()
    # input sequence (t-n, ... t-1)
    for i in range(n_in, 0, -1):
        cols.append(df.shift(i))
        names += [('var%d(t-%d)' % (j+1, i)) for j in range(n_vars)]
    # forecast sequence (t, t+1, ... t+n)
    for i in range(0, n_out):
        cols.append(df.shift(-i))
        if i == 0:
            names += [('var%d(t)' % (j+1)) for j in range(n_vars)]
        else:
            names += [('var%d(t+%d)' % (j+1, i)) for j in range(n_vars)]
    # put it all together
    agg = pd.concat(cols, axis=1)
    agg.columns = names
    # drop rows with NaN values
    if dropnan:
        agg.dropna(inplace=True)
    return agg

关于上段代码的理解可以参考:How to Convert a Time Series to a Supervised Learning Problem in Python

 

# 将数据归一化到0-1之间,无量纲化
scaler = MinMaxScaler(feature_range=(0,1))
scaled_data = scaler.fit_transform(example[['DATA_COL','TEMP_HIG','TEMP_COL','AVG_TEMP','AVG_WET']].values)
# 将时序数据转换为监督问题数据
reframed = series_to_supervised(scaled_data, 1, 1)
#删除无用的label数据
reframed.drop(reframed.columns[[6,7,8,9]], axis=1, inplace=True)
print(redf.info())
redf.head()

3.2 数据集划分及规整

# 数据集划分,选取前400天的数据作为训练集,中间150天作为验证集,其余的作为测试集
train_days = 400
valid_days = 150
values = redf.values
train = values[:train_days, :]
valid = values[train_days:train_days+valid_days, :]
test = values[train_days+valid_days:, :]
train_X, train_y = train[:, :-1], train[:, -1]
valid_X, valid_y = valid[:, :-1], valid[:, -1]
test_X, test_y = test[:, :-1], test[:, -1]

# 将数据集重构为符合LSTM要求的数据格式,即 [样本,时间步,特征]
train_X = train_X.reshape((train_X.shape[0], 1, train_X.shape[1]))
valid_X = valid_X.reshape((valid_X.shape[0], 1, valid_X.shape[1]))
test_X = test_X.reshape((test_X.shape[0], 1, test_X.shape[1]))
print(train_X.shape, train_y.shape, valid_X.shape, valid_y.shape, test_X.shape, test_y.shape)
(400, 1, 5) (400,) (150, 1, 5) (150,) (27, 1, 5) (27,)

4 建立模型并训练

model1 = Sequential()
model1.add(LSTM(50, activation='relu',input_shape=(train_X.shape[1], train_X.shape[2]), return_sequences=True))
model1.add(Dense(1, activation='linear'))
model1.compile(loss='mean_squared_error', optimizer='adam') 
# fit network
LSTM = model.fit(train_X, train_y, epochs=100, batch_size=32, validation_data=(valid_X, valid_y), verbose=2, shuffle=False)
# plot history
plt.plot(LSTM.LSTM['loss'], label='train')
plt.plot(LSTM.LSTM['val_loss'], label='valid')
plt.legend()
plt.show()

5 模型预测并可视化

plt.figure(figsize=(24,8))
train_predict = model.predict(train_X)
valid_predict = model.predict(valid_X)
test_predict = model.predict(test_X)
plt.plot(values[:, -1], c='b')
plt.plot([x for x in train_predict], c='g')
plt.plot([None for _ in train_predict] + [x for x in valid_predict], c='y')
plt.plot([None for _ in train_predict] + [None for _ in valid_predict] + [x for x in test_predict], c='r')
plt.show()

蓝色曲线为真实输出

绿色曲线为训练数据的预测输出

黄色曲线为验证数据集的预测输出

红色曲线为测试数据的预测输出(能看出来模型预测效果还是比较好的)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值