自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(252)
  • 资源 (1)
  • 收藏
  • 关注

原创 【Transformer拆解】-1. 输入嵌入(Input Embedding)

嵌入层可学习语义信息(类似词向量,如 "king" 和 "queen" 向量方向相近)。"fracture"(裂缝)与"permeability"(渗透率)向量夹角≈30°。:将输入的单词或标记(Token)转换为固定维度的向量(如 512 维)。通过几何结构编码先验知识(如"注水→注气"的向量平移性)将离散的符号(如单词)映射到连续向量空间,便于模型处理。"CO₂"与"EOR"(提高采收率)的余弦相似度>0.7。:相似含义的输入会得到几何上接近的向量表示。每个词wi​的one-hot向量ei​与。

2025-06-09 09:49:42 370

原创 【论文+代码】基于分支网络的水力压裂改造区范围预测

基于分支网络实现动静态数据有机融合,并且实现水力压裂后改造区范围的准确预测。

2025-05-21 09:00:00 439

原创 先验知识融合机器学习的几种方式

第一种是把网络的权重替换成一个在另外一个任务上预训练好的模型权重。经过的预训练的模型(如ImageNet预训练)往往已经具备的识别到一些基本的图片pattern的能力,如边缘,纹理,颜色等等,而识别这些信息的能力是识别一副图片的基础。这个思想和迁移学习类似。 第二种是在数据上下功夫。把原始数据的全局特征和局部特征分别训练,然后融合。 第三种是通过注意力机制让模型考虑先验知识:注意力放在鸟头,这就是添加先验信息 基于CAM图激活限制给模型加入先验知识:基于激活图,通过限制激活图的激活区域,加入目标先验。

2025-05-20 16:00:00 949

原创 【数据分析】常见数据降维技术比较

我们比较了一些降维技术的性能,如奇异值分解(SVD)、主成分分析(PCA)和线性判别分析(LDA)。我们的研究结果表明,方法的选择取决于特定的数据集和手头的任务。对于回归任务,我们发现PCA通常比SVD表现得更好。在分类的情况下,LDA优于SVD和PCA,以及原始数据集。线性判别分析(LDA)在分类任务中始终击败主成分分析(PCA)的这个是很重要的,但这并不意味着LDA在一般情况下是一种更好的技术。

2025-05-20 10:00:00 25

原创 RAG(Retrieval-Augmented Generation,检索增强生成)

RAG(Retrieval-Augmented Generation)是一种结合检索与生成的架构,旨在解决传统语言模型在处理需要外部知识任务时的局限性。传统模型依赖预训练数据,难以处理动态或实时信息,且可能产生错误信息。RAG通过检索外部知识库获取相关信息,再结合语言模型生成回答,适用于问答系统、事实核查、实时信息生成等需要准确外部知识的任务。RAG架构包括检索器、向量数据库、生成模型和排序/过滤模块,形成“检索-生成-反馈”链路。其优势包括知识时效性、抗幻觉能力、可解释性和轻量级适配。典型应用场景包括企业

2025-05-19 16:58:28 63

原创 CoT(Chain-of-Thought,思维链)推理

CoT(Chain-of-Thought,思维链)推理是一种让大语言模型(LLM)通过分步推导解决问题的方法,模拟人类逐步思考的过程。其核心目标包括复杂问题拆解、可解释性提升和性能优化。CoT的关键组成要素包括问题输入与解析、思维链生成、中间结果整合以及答案生成与验证。实现方式主要有Prompt Engineering、模型训练与微调以及多模态融合。CoT通过分步验证缓解模型幻觉,处理复杂问题,并增强可解释性。典型应用场景包括数学题、逻辑推理、符号推理和真实世界任务。技术原理涉及隐式知识激活、注意力机制和数

2025-05-19 16:14:21 55

原创 【论文+代码】融合小层信息约束和神经随机森林NRF的测井曲线生成模型研究

【论文+代码】融合小层信息约束和神经随机森林测井曲线生成模型研究

2025-01-19 09:55:10 941

原创 【论文+代码】基于RF模型和自适应域分解算法(GS-BIRCH)的测井曲线生成研究

基于随机森林和自适应域分解算法的测井曲线构建:(1)加入地层分层信息为物理约束;(2)模型创新集成;(3)自动化的域模型构建;(4)潜在的小层划分方法;(5)适用于小数据集

2025-01-19 09:36:48 97

原创 【top论文+代码】基于Catboos-SMBO-SHAP的润湿性预测和主控因素分析(多组分+混合气体)

✅作者简介:双一流博士,人工智能领域学习者,深耕机器学习,交叉学科实践者。已发表SCI1/区论文10+,发明专利10+。可提供论文服务,代码复现,专利思路和指导,提供科研小工具,分享科研经验,欢迎交流!📌📞联系博主:博文留言+主页底部联系方式+WeChat: Allein_STR📙本文内容:【基于Catboos-SMBO-SHAP的润湿性预测和主控因素分析(多组分+混合气体)】

2025-01-13 13:05:10 200

原创 【论文+代码】基于transformer的端到端符号回归算法

✅作者简介:双一流博士,人工智能领域学习者,深耕机器学习,交叉学科实践者。已发表SCI1/区top论文10+,发明专利10+。可提供论文服务,代码复现,专利思路和指导,提供科研小工具,分享科研经验,欢迎交流!📌个人主页: https://blog.csdn.net/allein_STR?📞联系博主:博文留言+主页底部联系方式+WeChat: Allein_STR📙本文内容:【基于transformer的端到端符号回归算法】

2025-01-09 22:52:30 1393 1

原创 【超详细】MIT 液态神经网络(LNNs)——深度学习新动向

输入可以是任何形式的时间序列数据,其中表示时间。例如传感器读数、金融市场数据、语音信号等。

2025-01-05 22:22:33 1010

原创 【已解决】TF2.2.0+python>3.8下LSTM报错

解决TF2.2.0+python>3.8下LSTM的报错

2023-07-03 10:48:38 1028

原创 【动态绘图】python可视化--丝滑版

【动态绘图】python可视化--pynimate

2023-03-28 16:04:23 1105

原创 【ChatGPT】比尔·盖茨最新分享:ChatGPT的发展,不止于此

本文内容:介绍 比尔·盖茨关于ChatGPT的最新分享:ChatGPT的发展,不止于此

2023-03-25 18:15:10 4418 1

原创 【技巧】十大深度学习技巧和经验总结

介绍称霸Kaggle的十大深度学习技巧和经验总结

2023-03-22 09:38:09 1519

原创 【绘图】比Matplotlib更强大:ProPlot

介绍ProPlot9大亮点+python代码

2023-03-19 17:08:41 2654

原创 【附代码】python采样方法集锦

介绍7种主要的采样方法,并给出python代码示例。

2023-03-19 16:16:28 4256

原创 少样本学习综述

元学习是FSL的一种流行方法,它涉及到在各种相关任务上训练模型,以便它能够学习如何有效地学习新任务。该算法学习从可用数据中提取任务无关和任务特定的特征,快速适应新的任务。是一种流行的基于梯度的元学习算法,它学习如何优化模型的参数以快速适应新任务。它通过一系列相关任务来训练模型,并使用每个任务中的一些示例来更新模型的参数。基于度量的元学习算法学习一种特殊的方法来比较每个新任务的不同示例。在训练过程中,算法通过仅使用每个新任务的几个标记示例更新模型参数来学习适应新任务。

2023-03-18 13:12:30 535

原创 【附代码】【入门级】多任务分类学习

1.数据获取与处理使用CIFAR-10[2]数据集,该数据集根据MIT许可证提供。该数据集由60000张32x32像素的RGB图像组成,分为10个不同的类别。它被分为50000个训练样本和10000个测试样本,并且是完美平衡的,这意味着数据集包含每个类6000个图像。数据集包含以下类别:飞机、汽车、鸟、猫、鹿、狗、青蛙、马、船和卡车。

2023-03-16 10:33:00 884

原创 常用的八大概率分布及其实现

A 为观察值,E为理论值,k为观察值的个数,最后一个式子实际上就是具体计算的方法了 n 为总的频数,p为理论频率,那么n*p自然就是理论频数(理论值)n 是称为“自由度”的参数,有时可以看到它被称为“d.o.f.” 对于较高的 n 值,t 分布更接近正态分布。t 分布是在样本量较小且总体标准差未知的情况下估计正态分布总体的均值时出现的连续概率分布族的任何成员。要注意的是,在正态分布中,均值、众数和中位数都是相等的。卡方检验的基本公式,也就是χ2的计算公式,即观察值和理论值之间的偏差。P = 二项分布概率。

2023-03-14 09:54:50 1101

转载 【综述】多任务学习

MT-DNN[1] 是微软开源的框架,主要是利用学习文本的自然语言理解任务通常可以利用多任务学习和预训练两种途径解决的思想,因此二者的结合可以增强文本理解能力,基于以上提出 MT-DNN 框架,集成了 MTL 和 BERT 语言模型预训练二者的优势,在 10 项 NLU 任务上的表现都超过了 BERT,并在通用语言理解评估(GLUE)、斯坦福自然语言推理(SNLI)以及 SciTail 等多个常用 NLU 基准测试中取得了当前最佳成绩。在该权重设置下,虽然每个任务的损失函数恒为 1 ,但是梯度不为 0。

2023-03-12 16:27:48 6507

原创 【数据分析】常见数据降维技术比较

我们比较了一些降维技术的性能,如奇异值分解(SVD)、主成分分析(PCA)和线性判别分析(LDA)。我们的研究结果表明,方法的选择取决于特定的数据集和手头的任务。对于回归任务,我们发现PCA通常比SVD表现得更好。在分类的情况下,LDA优于SVD和PCA,以及原始数据集。线性判别分析(LDA)在分类任务中始终击败主成分分析(PCA)的这个是很重要的,但这并不意味着LDA在一般情况下是一种更好的技术。

2023-03-08 15:10:31 455

原创 【时序】时序预测任务模型选择如何选择?

时间序列是一种特殊类型的数据集,其中一个或多个变量随着时间的推移被测量。在时间序列中,观测值是随着时间的推移而测量的。你的数据集中的每个数据点都对应着一个时间点。这意味着你的数据集的不同数据点之间存在着一种关系。这对可以应用于时间序列数据集的机器学习算法类型有重要影响。

2023-03-08 14:41:58 1437

原创 【时序】特征工程-时间序列特征构造

数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。由此可见,特征工程在机器学习中占有相当重要的地位。在实际应用当中,可以说特征工程是机器学习成功的关键。特征工程是什么?特征工程又包含了 Data PreProcessing(数据预处理)、Feature Extraction(特征提取)、Feature Selection(特征选择)和 Feature construction(特征构造)等子问题;本章内容主要讨论特征构造的方法。时间特构造以及时间序列特征构造的具体方法:对于时间型数据来说,即

2023-03-06 21:53:20 1743

原创 【数据分析】缺失数据如何处理?pandas

本文主要处理缺失数据

2023-03-02 10:05:41 569

原创 【知识图谱】架构-特点-缺点简介

物联网、云计算、人工智能等新一代信息技术的迅猛发展,带来了制造业的新一轮突破,推动着制造系统向智能化方向发展,驱动着未来制造模式的创新。其中数据和知识是实现制造业与新一代信息技术融合的基础,是实现智能制造的保障。一方面,产品在其生命周期的各个阶段将会产生海量工业数据和知识;另一方面,工业数据和知识是制造领域的信息化进程的必备资源,其中蕴含了大量有用的模式。然而,当前制造领域产品设计、制造、装配、服务等生命周期过程中数据以及知识的存储大多以传统关系型数据库为基础。

2023-02-28 09:27:02 710

原创 【异常检测三件套】系列3--时序异常检测综述

写在前面:异常检测共包含3个内容,从多个方面剖析异常检测方法,本文为第三篇。过往内容请查看以下链接:【异常检测三件套】系列1--14种异常检测算法https://blog.csdn.net/allein_STR/article/details/128114175?csdn_share_tail=%7B%22【异常检测三件套】系列3--时序异常检测综述本文将从以下6个方面介绍:一、异常分类二、异常检测的挑战三、异常检测的模型分类四、异常检测的数据集五、异常检测的模型表现对比六、结论和未来方向

2023-02-26 14:51:15 664

原创 【持续学习】清华最新持续学习综述

学习是智能系统适应环境的基础。为了应对外界的变化,进化使人类和其他生物具有很强的适应性,能够不断地获取、更新、积累和利用知识。自然,我们期望人工智能(AI)系统以类似的方式适应。这激发了持续学习的研究,其中典型的设置是逐一学习一系列内容,并表现得就像同时观察到的一样(图1,a)。这些内容可以是新技能、旧技能的新示例、不同的环境、不同的背景等,并包含特定的现实挑战。在许多文献中,持续学习也被称为增量学习或终身学习,但没有严格的区分。与传统的基于静态数据分布的机器学习模型不同,

2023-02-22 10:00:23 3625

原创 【一文速通】五个主流过拟合解决方法

过拟合是一个需要解决的问题,因为它会让我们无法有效地使用现有数据。有时我们也可以在构建模型之前,预估到会出现过拟合的情况。通过查看数据、收集数据的方式、采样方式,错误的假设,错误表征能够发现过拟合的预兆。为避免这种情况,请在建模之前先检查数据。但有时在预处理过程中无法检测到过拟合,而是在构建模型后才能检测出来。

2023-02-20 09:57:31 426

转载 【神器】提取时间序列技术指标的神器

如果只需要使用像移动平均线这样的简单指标,这种方法实现起来比较轻松,但当我们需要使用更复杂的数学模型时,此时就会想到想是否有这样的python库来轻松实现,其实这就是API的作用,它们调解低级代码的复杂性,提供一个简化的高级接口。我们可以看到,每当我运行该算法时,就会产生一个新的时间序列,有4个维度,每个维度代表股票的一个OCHL数据。我们的假设是,当趋势的导数(也就是瞬时变化率)根据我们的参数达到最大容忍度时,是股票反转趋势的适当时机。应用该策略后,我们可以看到新的列是如何被添加到我们的原始数据集中的。

2023-02-19 08:45:39 918

原创 【机器学习数据集】如何获得机器学习的练习数据?

【机器学习数据集】如何获得机器学习和深度学习的练习数据?

2023-02-16 09:48:29 838

转载 常用统计检验Python代码!

常用统计检验Python代码!

2023-02-14 09:02:03 1525 2

原创 神经网络损失函数分布可视化神器

作者主要想研究几个问题:1. 为什么我们能够最小化高度非凸神经损失函数?2. 为什么得到的最小值这个结果具有泛化性?3. 不同的神经网络网络架构如何影响损失函数分布 (loss landascape),以及训练的超参数参数如何影响损失函数分布

2023-02-12 11:45:20 1119

原创 【一文速通】各种机器学习算法的特点及应用场景

近邻 (Nearest Neighbor)KNN算法的核心思想是,如果一个样本在特征空间中的K个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性。该方法在确定分类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。KNN方法在类别决策时,只与极少量的相邻样本有关。适用情景:由于KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,KNN方法较其他方法更为适合。

2023-02-10 18:27:11 973

转载 一文解答为什么时序预测很难

时空数据是一个常见的例子,每个观察值都在两个维度上相关,因此数据具有自身的滞后(时间依赖性)和附近位置的滞后(空间依赖性)。平稳性是时间序列的核心概念,如果时间序列的趋势(例如平均水平)不随时间变化,则该时间序列是平稳的。时间序列往往都只包含少量的观察值,可能没有足够的数据来构建足够的模型。多步预测最简单的方法是递归形式,训练单个模型进行单步预测,然后将模型与其先前的预测结果作为输入得到后续的输出。时间序列多步预测需要预测未来多个值, 提前预测许多步骤具有重要的实际优势,多步预测减少了长期的不确定性。

2023-02-08 09:45:03 1256

原创 【附代码】python绘图集锦-排序 (Ranking)关系图

【附代码】python绘图集锦共7篇内容,本文为排序 (Ranking)关系图。

2023-02-04 09:55:41 768

原创 【附代码】python绘图集锦-偏差 (Deviation)关系图

python绘图集锦系列共7篇文章,本文为偏差 (Deviation)关系图。

2023-02-02 20:49:44 393

原创 【附代码】python绘图集锦-组成(Composition)关系图

python绘图集锦系列共7篇文章,本文为组成(Composition)关系图。【附代码】python绘图集锦-组成(Composition)关系图。1.华夫饼图(Waffle Chart)类似饼图的效果,面积大小反应变量大小。华夫饼图(Waffle Chart)展示较大数据集中的各个组的组成。4.柱状图(Bar Chart)2.饼图(Pie Chart)3.树状图(Treemap)您的支持是我坚持的动力~饼图(Pie Chart)柱状图(Bar Chart。树状图(Treemap)

2023-01-31 11:09:00 461

原创 【附代码】python绘图集锦-变化(Change)关系图

python绘图集锦系列共7篇文章,本文为变化(Change)关系图。

2023-01-29 14:17:15 510

原创 【附代码】python绘图集锦-分布(Distribution)关系图

python绘图集锦系列共7篇文章,本文为分布(Distribution)关系图。

2023-01-28 10:08:55 699

深度学习Hopular代码结构与运行指南:模型参数调整及数据处理流程详解

内容概要:本文档《Hopular代码运行须知.docx》详细介绍了Hopular项目的代码结构、主要文件的功能以及运行时需要注意的关键事项。 适合人群:具有Python编程基础,尤其是对PyTorch有一定了解,从事机器学习或深度学习研究和开发的技术人员。 使用场景及目标:①帮助开发者快速理解和上手Hopular项目;②指导用户根据自身需求修改模型参数和数据集,以达到更好的实验效果;③为研究人员提供详细的代码运行指南,确保实验结果的准确性和可复现性。 阅读建议:由于Hopular项目涉及多个文件和复杂的配置,建议读者首先通读整个文档,了解各部分功能后,再针对具体任务深入研究相关文件的具体实现细节。特别是对于初次使用者,应重点关注如何正确设置和划分数据集,以及如何调整模型参数以适应不同的应用场景。

2025-05-08

现代化Hopfield网络模型

针对表格数据的现代化Hopfield网络模型。适用于小数据。

2025-05-08

多源异构输入-分支网络模型

1. 同名博客:Keras: 多输入及混合数据输入的神经网络模型 2. 实例讲解,包括数据+代码 4. 基于keras,python代码,可运行 5. 若有疑问,可在同名博客https://blog.csdn.net/allein_STR/article/details/107408164?spm=1001.2014.3001.5502评论区说明,也可添加v:boboangang(备注来意)。

2025-05-08

sobol敏感性分析 python实现

1. sobol敏感性分析 python实现方法。 代码目的是通过sobol敏感性分析方法评估机器学习模型中不同因素的影响大小。 结果分为一阶敏感性,二阶敏感性和总阶敏感性三种。 2. 实例详细讲解,包括(数据+代码+注释) 3. 可自定义图的标签、字体大小等设置 4. python代码,可直接运行。环境:python==3.6.5,tensorflow==1.9.0 5. RF.model为训练结束后保存的RF模型。用户可自定义替换 6. 结果图中为样本数是128,256,512,1024和2048五种情况下的结果。一般而言,样本数越多,结果越准确。 7. 若有疑问,可通过2900045856@qq.com或关注CSDN博主allein_STR后咨询或购买(备注“CSDN资源”)。

2022-08-17

手把手教你使用SHAP(数据+代码+注释)

1. 同名博客:手把手教你使用SHAP 2. 实例讲解,包括(数据+代码+注释) 3. 可自定义图的标签、字体大小等设置 4. 基于jupyter,python代码,可直接运行 5. 若有疑问,可在同名博客https://blog.csdn.net/allein_STR/article/details/121459159?spm=1001.2014.3001.5502评论区说明。

2022-05-09

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除