吴恩达机器学习学习笔记(四)
标签: 机器学习
代价函数与反向传播(Costfunction and Backpropagation)
一.代价函数
L:代表神经网络的层数
s_l sl 代表第i层的单元数
k代表输出层的单元数
二元分类问题时:
y=0 或者 y=1
仅有一个输出,s_l sl =1
k=0
当多元分类k=0问题时:
s_l sl =k(当k>=3)
y为一个K维矩阵,有k个输出单元
1逻辑分类的评价函数:
J(\theta) = - \frac{1}{m} \sum_{i=1}^m [ y^{(i)}\ \log (h_\theta (x^{(i)})) + (1 - y^{(i)})\ \log (1 - h_\theta(x^{(i)}))] + \frac{\lambda}{2m}\sum_{j=1}^n \theta_j^2
J(θ)=−1m∑i=1m[y(i) log(hθ(x(i)))+(1−y(i)) log(1−hθ(x(i)))]+λ2m∑j=1nθ2j
2.神经网络的评价函数:
J(Θ)=−1m∑i=1m∑k=1K[y(i)klog((hΘ(x(i