吴恩达机器学习学习笔记(四)(附作业代码注释)

本文详细介绍了吴恩达机器学习课程中的代价函数与反向传播,包括逻辑分类的评价函数、神经网络的评价函数及其计算细节,以及反向传播的实现步骤和应用,如参数展开、梯度检测和随机初始化。同时,提供了作业代码实现,帮助读者深入理解概念。
摘要由CSDN通过智能技术生成

吴恩达机器学习学习笔记(四)

标签: 机器学习


代价函数与反向传播(Costfunction and Backpropagation)

一.代价函数

L:代表神经网络的层数
s_l sl 代表第i层的单元数
k代表输出层的单元数
二元分类问题时:
y=0 或者 y=1
仅有一个输出,s_l sl =1
k=0
当多元分类k=0问题时:
s_l sl =k(当k>=3)
y为一个K维矩阵,有k个输出单元

基本概念

1逻辑分类的评价函数

J(\theta) = - \frac{1}{m} \sum_{i=1}^m [ y^{(i)}\ \log (h_\theta (x^{(i)})) + (1 - y^{(i)})\ \log (1 - h_\theta(x^{(i)}))] + \frac{\lambda}{2m}\sum_{j=1}^n \theta_j^2

J(θ)=1mi=1m[y(i) log(hθ(x(i)))+(1y(i)) log(1hθ(x(i)))]+λ2mj=1nθ2j

2.神经网络的评价函数

J(Θ)=1mi=1mk=1K[y(i)klog((hΘ(x(i
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值