彻底理解递归,从递归的本质说起!

遍历二叉树,是学习树这种数据结构首先要理解的一种基本操作。比较简单地方式就是用递归去遍历,鉴于递归这种调用方法有一定的特殊性,今天还是想来讲讲怎么去理解递归遍历。本文针对想理解递归的过程的朋友,因为本人在学到这一部分的时候也纠结了很久,其实只要理解了过程,那以后写递归的代码再也不用“心虚”了,因为那个过程是可预测的,可证明的。

递归调用的特殊性在于自己调用自己,给人一种迷茫感,如果是递归调用“一次”,那还相对好理解,比如求阶乘的递归算法,

int F(int n)
{
	if(n==0)//递归边界
            return 1;
	return n*F(n-1);//递归公式
}

一层一层调用,知道递归结束条件成立,再一层一层返回;但如果像二叉树是递归调用“两次”,似乎理解起来就不是很容易了。

void preorder(bintree t){
    if(t){
        printf("%c ",t->data);
        preorder(t->lchild);
        preorder(t->rchild);
    }
}

对于一颗如下的二叉树,它的前序遍历顺序该怎么理解呢?我们今天来好好理一遍它的过程。

可以把递归看成是自己调用另一个和自己功能一样,但是函数名不同的函数来理解,或许看得更清楚明白,下面我们来看看这个前序遍历的过程是怎样的。

首先,我们记上面这个函数为F1,表示外层的函数,内层函数表示下一层的函数,也就是第二层的F2,依次类推。


那从F1依次调用直到F3,注意这个时候都是在左子树就是L的调用,所以依次打印出“A B D ”,这都没什么问题,就是普通函数调用。F3调用F4的时候,记得我们层函数的最前面是递归的退出条件,也就是空子树就返回,由于D的左子树是空,所以到这里F4会返回到F3,即返回到L之后,R之前。


接在,在F3层,从R开始继续调用F4,即开始访问D的右子树,此时打印出“F”,然后调用F4的左子树,也就是调用F5函数,当然是空,所以返回到F4,再调用F4的右子树,也是空,所以也是返回到F4,此时F4这一层已经全部调用完成,所以继续向上返回到F3,记得我们之前是怎么下来的吗,就是从F3的右子树开始访问,所以F3层函数也已经调用完成,继续往上返回到F2。


继续调用F2的右子树,也就是调用F3函数,此时打印出“E”,接着再访问E的左右子树,都是空,所以返回到F2,F2层函数已经全部调用完成。返回到F1,也就是A的左子树部分全部访问完成,此时开始访问A的右子树,打印出“C”,再推下去就是依次打印“G”和“H”。至此,整颗二叉树节点前序遍历完成,顺序就是“A B D F E C G H”。

二叉树是一种递归定义的数据结构,所以用递归来写它的相关算法是顺理成章的,只是有时候觉得需要稍微理解一下这个过程,这个就是我的理解方法。

  • 194
    点赞
  • 692
    收藏
    觉得还不错? 一键收藏
  • 25
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 25
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值