思路:(具体参考《算法艺术与信息学竞赛》)
1,先化简均方差公式,可以看出,只需要让每个分割后的矩形的总分的平方和尽量小,即可使均方差最小。
2,考虑左上角坐标为(x1,y1),右下角坐标为(x2,y2)的棋盘,设它的总和为s[x1,y1,x2,y2]切割k次以后得到k+1块矩形的总分平方和最小值为d[k,x1,y1,x2,y2],则它可以沿着横线切,也可以沿着竖线切,然后选一块继续切(递归)。。
3,由1,2部可以得到状态转移方程:
d[k,x1,y1,x2,y2]=
min{
min{d[k-1,x1,y1,a,y2]+s[a+1,y1,x2,y2]^2,d[k-1,a+1,y1,x2,y2]+s[x1,y1,a,y2]^2},
min{d[k-1,x1,y1,x2,b]+s[x1,b+1,x2,y2]^2,d[k-1,x1,b+1,x2,y2]+s[x1,y1,x2,b]^2}
}其中:(x1<=a<x2),(y1<=b<y2);初始值,对于k==0,d[k,x1,y1,x2,y2]=s[x1,y1,x2,y2]^2;
CODE:
/*记忆化搜索*/
/*AC代码:0ms*/
#include <iostream>
#include <cmath>
#define INF 99999999//这里不能用0x7fffffff会溢出而WA
#define min(a,b) (a<b?a:b)
int s[9][9];//s[i][j]记录(1,1)-(i,j)中所有元素的和
int dp[16][9][9][9][9];
int N;
double ave;
void get_s()
{
int i,j,temp,v;
memset(s,0,sizeof(s));
memset(dp,-1,sizeof(dp));
for(i=1;i<=8;i++)
{
for(j=1,temp=0;j<=8;j++)
{
scanf("%d",&v);
temp+=v;
s[i][j]=temp;
if(i>1) s[i][j]+=s[i-1][j];
}
}
ave=((double)s[8][8])*1.0/N;
}
int get_sum(int x1,int y1,int x2,int y2)
{
int ans=0;
ans+=s[x2][y2];
if(x1>1) ans-=s[x1-1][y2];
if(y1>1) ans-=s[x2][y1-1];
if(x1>1&&y1>1) ans+=s[x1-1][y1-1];
return ans*ans;//关键
}
int dfs(int k,int x1,int y1,int x2,int y2)
{
int i,w1,w2,temp;
if(dp[k][x1][y1][x2][y2]!=-1) return dp[k][x1][y1][x2][y2];
if(k==1)
{
dp[k][x1][y1][x2][y2]=get_sum(x1,y1,x2,y2);
return dp[k][x1][y1][x2][y2];
}
int ans=INF;
for(i=x1;i<x2;i++)//水平切割
{
w1=dfs(k-1,x1,y1,i,y2)+get_sum(i+1,y1,x2,y2);
w2=dfs(k-1,i+1,y1,x2,y2)+get_sum(x1,y1,i,y2);
temp=min(w1,w2);
ans=min(ans,temp);
}
for(i=y1;i<y2;i++)
{
w1=dfs(k-1,x1,y1,x2,i)+get_sum(x1,i+1,x2,y2);
w2=dfs(k-1,x1,i+1,x2,y2)+get_sum(x1,y1,x2,i);
temp=min(w1,w2);
ans=min(ans,temp);
}
dp[k][x1][y1][x2][y2]=ans;
return ans;
}
int main()
{
while(scanf("%d",&N)!=EOF)
{
get_s();
int ans=dfs(N,1,1,8,8);
//printf("%d %.3lf\n",ans,ave);
double res=((double)ans)*1.0/N-ave*ave;
printf("%.3lf\n",sqrt(res));
}
return 0;
}