泰坦尼克号逃生评分模型(1):需求背景

通过对泰坦尼克号乘客数据的分析,利用Logistic回归建立预测模型,评估不同乘客特征对其生存概率的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 需求背景

泰坦尼克号这艘豪华游艇倒了,大家都惊恐逃生,可是救生艇的数量有限,无法人人都有,而在女士与小孩优先等社会背景下,是否获救并非随机。所以某公司希望在那个时代的社会背景之下,考察哪些用户更容易获救,并基于此对每位乘客是否获救进行评分。


2.模型思路

依据大数据思维,以891位乘客信息数据作为模型数据支撑,并基于Logistic回归对模型进行训练,最后依据标准评分卡形式对Logistic回归结果进行评分转换,获得每位乘客的获救评分。


3.数据宽表




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值