MT【149】和式变形

(2018浙江省赛14题)
将$2n(n\ge2)$个不同的整数分成两组$a_1,a_2,\cdots,a_n;b_1,b_2,\cdots,b_n$.
证明:$\sum\limits_{1\le i\le n;1\le j\le n}|a_i-b_j|-\sum\limits_{1\le i<j\le n}{\left(|a_j-a_i|+|b_j-b_i|\right)}\ge n$


$\textbf{证明:}$不妨设$a_1<a_2<\cdots<a_n;b_1<b_2<\cdots<b_n$
$$\begin{align*}
\sum\limits_{1\le i\le n;1\le j\le n}|a_i-b_j|
&=\sum\limits_{1\le i<j\le n}{\left(|a_i-b_j|+|a_j-b_i|\right)}+\sum\limits_{i=j}|a_i-b_j| \\
&\ge\sum\limits_{1\le i<j\le n}{\left(|a_i-b_j|+|a_j-b_i|\right)}+n\\
&\ge\sum\limits_{1\le i<j\le n}{\left(b_j-a_i+a_j-b_i\right)}+n\\
&=\sum\limits_{1\le i<j\le n}{\left(|a_j-a_i|+|b_j-b_i|\right)}+n\\
\end{align*}$$

转载于:https://www.cnblogs.com/mathstudy/p/8853592.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值