MT【177】三个乘积和

对任意 2 个 1,2,3,4,5,6 的全排列 $(a_1,a_2,a_3,a_4,a_5,a_6)$ 和 $(b_1,b_2,b_3,b_4,b_5,b_6)$,求$\displaystyle S=\sum_{i=1}^6 ia_ib_i$ 的最小值______


解答:$\displaystyle\sum_{i=1}^6 ia_ib_i \ge6\sqrt[6]{6!}=72\sqrt{5}>160.$
又$162=1*5*5+2*4*4+3*3*3+4*6*1+5*1*6+6*2*2$
且设$ia_ib_i$中最大数为$x(\textbf{容易知道}x\ge30)$,故$\displaystyle\sum_{i=1}^6 ia_ib_i\ge x+5\sqrt[5]{\frac{6!}{x}}\ge 30+60\sqrt[5]{50}>161$ 故最小值162

转载于:https://www.cnblogs.com/mathstudy/p/8975567.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值