LeetCode 611. 有效三角形的个数

难度:中等。
标签:贪心,数组,双指针,二分查找,排序。

枚举第一个边i和第二个边j,两边之和记为cur,找到数组中第一个大于等于cur的值的索引k,则[j + 1, k - 1]之间的个数是可以与i,j组成三角形的个数。
正确解法:

class Solution {
public:
    int triangleNumber(vector<int>& nums) {
        int n = nums.size();
        sort(nums.begin(), nums.end());
        int ans = 0;
        for(int i = 0; i < n - 2; ++i){
            for(int j = i + 1; j < n - 1; ++j){
                int cur = nums[i] + nums[j];
                int k = lower_bound(nums.begin() + j + 1, nums.end(), cur) - nums.begin();
                ans += k - j - 1;
            }
        }
        return ans;
    }
};

时间复杂度 O ( n 2 l o g n ) O(n^2logn) O(n2logn),空间复杂度 O ( l o g n ) O(logn) O(logn)

结果:
在这里插入图片描述

进行一些优化,随着j的增长,k也是在增长的,因此不用每次都去重新查找k,可以将k也当作一个指针。
将k开始赋值为i + 1,若nums[k + 1] < nums[i] + nums[j],则k+1,最终计算k和j之间的个数即可。

正确解法:

class Solution {
public:
    int triangleNumber(vector<int>& nums) {
        int n = nums.size();
        sort(nums.begin(), nums.end());
        int ans = 0;
        for(int i = 0; i < n - 2; ++i){
            int k = i + 1;
            for(int j = i + 1; j < n - 1; ++j){
                int cur = nums[i] + nums[j];
                while(k + 1 < n && nums[k + 1] < cur){
                    k++;
                }
                ans += max(k - j, 0);
            }
        }
        return ans;
    }
};

时间复杂度 O ( n 2 ) O(n^2) O(n2),空间复杂度 O ( l o g n ) O(logn) O(logn)

结果:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值