难度:中等。
标签:贪心,数组,双指针,二分查找,排序。
枚举第一个边i和第二个边j,两边之和记为cur,找到数组中第一个大于等于cur的值的索引k,则[j + 1, k - 1]之间的个数是可以与i,j组成三角形的个数。
正确解法:
class Solution {
public:
int triangleNumber(vector<int>& nums) {
int n = nums.size();
sort(nums.begin(), nums.end());
int ans = 0;
for(int i = 0; i < n - 2; ++i){
for(int j = i + 1; j < n - 1; ++j){
int cur = nums[i] + nums[j];
int k = lower_bound(nums.begin() + j + 1, nums.end(), cur) - nums.begin();
ans += k - j - 1;
}
}
return ans;
}
};
时间复杂度 O ( n 2 l o g n ) O(n^2logn) O(n2logn),空间复杂度 O ( l o g n ) O(logn) O(logn)
结果:
进行一些优化,随着j的增长,k也是在增长的,因此不用每次都去重新查找k,可以将k也当作一个指针。
将k开始赋值为i + 1,若nums[k + 1] < nums[i] + nums[j],则k+1,最终计算k和j之间的个数即可。
正确解法:
class Solution {
public:
int triangleNumber(vector<int>& nums) {
int n = nums.size();
sort(nums.begin(), nums.end());
int ans = 0;
for(int i = 0; i < n - 2; ++i){
int k = i + 1;
for(int j = i + 1; j < n - 1; ++j){
int cur = nums[i] + nums[j];
while(k + 1 < n && nums[k + 1] < cur){
k++;
}
ans += max(k - j, 0);
}
}
return ans;
}
};
时间复杂度 O ( n 2 ) O(n^2) O(n2),空间复杂度 O ( l o g n ) O(logn) O(logn)
结果: