Description
A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路。每一条道路对车辆都有重量限制,简称限重。现在有 q 辆货车在运输货物, 司机们想知道每辆车在不超过车辆限重的情况下,最多能运多重的货物。
Input
输入文件名为 truck.in。
输入文件第一行有两个用一个空格隔开的整数 n,m,表示 A 国有 n 座城市和 m 条道
路。 接下来 m 行每行 3 个整数 x、 y、 z,每两个整数之间用一个空格隔开,表示从 x 号城市到 y 号城市有一条限重为 z 的道路。注意: x 不等于 y,两座城市之间可能有多条道路 。
接下来一行有一个整数 q,表示有 q 辆货车需要运货。
接下来 q 行,每行两个整数 x、y,之间用一个空格隔开,表示一辆货车需要从 x 城市运输货物到 y 城市,注意: x 不等于 y 。
Output
输出文件名为 truck.out。
输出共有 q 行,每行一个整数,表示对于每一辆货车,它的最大载重是多少。如果货
车不能到达目的地,输出-1。
Sample
4 3
1 2 4
2 3 3
3 1 1
3
1 3
1 4
1 3
3
-1
3
Hints
对于 30%的数据,0 < n < 1,000,0 < m < 10,000,0 < q< 1,000;
对于 60%的数据,0 < n < 1,000,0 < m < 50,000,0 < q< 1,000;
对于 100%的数据,0 < n < 10,000,0 < m < 50,000,0 < q< 30,000,0 ≤ z ≤ 100,000。
Solution
根据最大生成树每次加入最长边的性质,答案一定是最大生成树上的某边的权值
建一棵最大生成树,转化为求两点间最短边,在求lca的过程中求得,可以用倍增或树链剖分
第一次用倍增求lca ~(≧▽≦)~
anc[i][j]表示i节点往上跳2j所到达的点,mi[i][j]表示i节点往上跳2j经过的边中权值最小的边的权值
求两点的lca时,先使两个点跳到等深的节点上,然后再一起往上跳
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#define mm 50011
#define nn 10011
#define inf 100000000
using namespace std;
int o=0;
int dep[nn],fa[nn],fir[nn],nxt[mm<<1],to[mm<<1],w[mm<<1],anc[nn][21],mi[nn][21];
struct bb{
int u,v,w;
bool operator <(const bb&x)const{
return w>x.w;
}
}b[mm];
int read()
{
int ans=0,f=1;char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') f=-1;ch=getchar();}
while(isdigit(ch)) {ans=ans*10+ch-'0';ch=getchar();}
return ans*f;
}
int find(int x)
{
return fa[x]==x? x:fa[x]=find(fa[x]);
}
void add(int u,int v,int val)
{
nxt[++o]=fir[u];fir[u]=o;to[o]=v;w[o]=val;
nxt[++o]=fir[v];fir[v]=o;to[o]=u;w[o]=val;
}
void dfs(int o)
{
for(int i=fir[o];i;i=nxt[i])
if(!dep[to[i]])
{
dep[to[i]]=dep[o]+1;
anc[to[i]][0]=o;
mi[to[i]][0]=w[i];
for(int j=1;j<=16;j++)
{
anc[to[i]][j]=anc[anc[to[i]][j-1]][j-1];
mi[to[i]][j]=min(mi[to[i]][j-1],mi[anc[to[i]][j-1]][j-1]);
}
dfs(to[i]);
}
}
int main()
{
int n,m,u,v,ex=0,q,ans;
n=read();m=read();
for(int i=1;i<=m;i++)
b[i].u=read(),b[i].v=read(),b[i].w=read();
sort(b+1,b+m+1);
for(int i=1;i<=n;i++)
fa[i]=i;
for(int i=1;i<=m;i++)
{
u=b[i].u;v=b[i].v;
if(find(u)!=find(v))
{
fa[fa[u]]=fa[v];
add(u,v,b[i].w);
if(++ex==n-1)
break;
}
}
dep[1]=1;
dfs(1);
q=read();
for(int i=1;i<=q;i++)
{
u=read();v=read();ans=inf;
if(find(u)!=find(v))
{
printf("-1\n");
continue;
}
if(dep[u]<dep[v]) swap(u,v);
if(dep[u]!=dep[v])
for(int j=16;j>=0;j--)
if(anc[u][j]&&dep[anc[u][j]]>=dep[v])
{
ans=mi[u][j]<ans? mi[u][j]:ans; //先更新ans,再改变u
u=anc[u][j];
}
if(u==v)
{
printf("%d\n",ans);
continue;
}
else
for(int j=16;j>=0;j--)
if(anc[u][j]&&anc[u][j]!=anc[v][j])
{
ans=mi[u][j]<ans? mi[u][j]:ans;
ans=mi[v][j]<ans? mi[v][j]:ans;
u=anc[u][j],v=anc[v][j];
}
ans=mi[u][0]<ans? mi[u][0]:ans;
ans=mi[v][0]<ans? mi[v][0]:ans;
printf("%d\n",ans);
}
return 0;
}