【LCA练习 倍增 tarjin】 洛谷P3379【模板】最近公共祖先 P1967货车运输

本文讨论了洛谷P3379问题中最近公共祖先(LCA)的两种解法——倍增法和Tarjan算法。倍增法构造时间为O(nlogn),单次查询O(logn),而Tarjan法构造时间为O(n),但仅适用于离线查询,全部查询时间O(N+M)。文中指出,两种方法的优劣取决于具体数据特征,并提供了错误示例和优化建议。
摘要由CSDN通过智能技术生成

倍增 构造O(nlogn),在线(单次)查询O(logn)
tarjin 构造O(n) ,离线(全部)查询O(N+M)
根据题目 洛谷P3379【模板】最近公共祖先 的样例测试,tarjin和倍增不能通过占用的时间或空间评判高下,谁占优势应该跟数据的特征有关。

洛谷P3379【模板】最近公共祖先

倍增方法

构造fa数组的正确写法是这样的
for(int i=1; i<=20; i++){
fa[x][i] = fa[fa[x][i-1]][i-1];
}
然而第一遍错写成了这样
for(int i=1; i<=20; i++){
fa[x][i] = fa[father][i-1];
}
这显然是错误的,不是方法他的父亲的上2^i-1个节点,而是访问它的上2^i-1个节点的上2^i-1个节点
引以为戒

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <queue>
#include <map>
#include <stack>
#include <string>
#include <cstring>
#include <vector>
#include <cmath>
#include <set>
typedef long long int LL;
const int N = 5e5+5;
int fa[N][22],depth[N],head[N];
int n,m,s,u,v;
int idx;
struct Edge
{
   
    int to,nxt;
}edg[N<<1];
void addEdge(int fr,int to)
{
   
    edg[idx].to = to;
    edg[idx].nxt = head[fr];
    head[fr] = idx++;
}
void build(int x,int father)
{
   
    fa[x][0] = father;
    depth[x] = depth[father]+1;
    for(int i=1; i<=20; i++){
   
        fa[x][i] = fa[fa[x][i-1]][i-1];
    }
    for(int e=head[x]; e; e=edg[e].nxt){
   
        int y = edg[e].to;
        if(y!=father) build(y,x);
    }
}
int lca(int x,int y)
{
   
    if(depth[x] < depth[y]) std::swap(x,y);
    for(int i=20; i>=0; i--){
   
        if(fa[x][i]) if(depth[fa[x][i]]>=depth[y]){
   
            x = fa[x][i];
            if(depth[x] == depth[y]) break;
        }
    }
    if(x == y) return x;
    for(int i=20; i>=0; i--){
   
        if(fa[x][i]) if(fa[x][i] != fa[y][i]){
   
            x = fa[x][i];
            y = fa[y][i];
        }
    }
    return fa[y][0];
}
int main()
{
   
    //freopen("D:\\EdgeDownloadPlace\\P3379_2.in","r",stdin);
    idx = 2;
    scanf("%d%d%d",&n,&m,&s);
    for(int i=1; i<n; i++){
   
        scanf("%d%d",&u,&v);
        addEdge(u,v); addEdge(v,u);
    }
    build(s,0);
    for(int i=0; i<m; i++){
   
        scanf("%d%d",&u,&v);
        printf("%d\n",lca(u,v));
    }
    return 0;
}

倍增方法可以提前算log优化

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <queue>
#include <map>
#include <stack>
#include <string>
#include <cstring>
#include <vector>
#include <cmath>
#include <set>
typedef long long int LL;
const int N = 5e5+5;
int fa[N][22],depth[N],head[N],old_brother[N];
int n,m,s,u,v;
int idx;
struct Edge
{
   
    int to,nxt;
}edg[N<<1];
void addEdge(int fr,int to)
{
   
    edg[idx].to = to;
    edg[idx].nxt = head[fr];
    head[fr] = idx++;
}
void build(int x,int father)
{
   
    fa[x][0] = father;
    depth[x] = depth
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值