基于 Matlab 的通信系统仿真――数字通信大作业
附:MATLAB的通信系统仿真.rar
资源包括:main.m,modulation.m,demodulation.m,MATLAB的通信系统仿真说明文档
https://download.csdn.net/download/alongiii/14945669
目录
系统综述
利用 Matlab 仿真软件,完成如图 1 所示的一个基本的数字通信系统。信号源产生 0、1
等概分布的随机信号,映射到 16QAM 的星座图上,同时一路信号已经被分成了实部和虚部,
后边的处理建立在这两路信号的基础上。实部、虚部信号分别经过平方根升余弦滤波器,再
加入高斯白噪声,然后通过匹配滤波器(平方根升余弦滤波器)。最后经过采样,判决,得到
0、1 信号,同原信号进行比较,给出 16QAM 数字系统的误码。
结构框图
系统实现
随机信号的生成
利用 Matlab 中自带的函数 randsrc 来产生 0、1 等概分布的随机信号。源代码如下所示:
%====定义待仿真序列的维数 N
global N
N=320;
%====定义产生‘1’的概率为 p
global p
p=0.5;
%==============================
%首先产生随机二进制序列
source=randsrc(1,N,[1,0;p,1-p]);
0、1 等概分布的随机信号如图 2 所示。
星座图映射
将等概分布的 0、1 信号映射到 16QAM 星座图上。每四个 bit 构成一个码子,具体实现
的方法是,将输入的信号进行串并转换分成两路,分别叫做 I 路和 Q 路。再把每一路的信号
分别按照两位格雷码的规则进行映射,这样实际上最终得到了四位格雷码。为了清楚说明,
参看表 1:
源代码如下所示:
function [y1,y2]=Qam_modulation(x)
%QAM_modulation
%==============================
%对产生的二进制序列进行 QAM 调制
%=====首先进行串并转换,将原二进制序列转换成两路信号
N=length(x);
a=1:2:N;
y1=x(a);
y2=x(a+1);
%=====分别对两路信号进行 QPSK 调制
%======对两路信号分别进行 2-4 电平变换
a=1:2:N/2;
temp1=y1(a);
temp2=y1(a+1);
y11=temp1*2+temp2;
temp1=y2(a);
temp2=y2(a+1);
y22=temp1*2+temp2;
%=======对两路信号分别进行相位调制
a=1:N/4;
y1=(y11*2-1-4)*1.*cos(2*pi*a);
y2=(y22*2-1-4)*1.*cos(2*pi*a);
%========按照格雷码的规则进行映射
y1(find(y11==0))=-3;
y1(find(y11==1))=-1;
y1(find(y11==3))=1;
y1(find(y11==2))=3;
y2(find(y22==0))=-3;
y2(find(y22==1))=-1;
y2(find(y22==3))=1;
y2(find(y22==2))=3;
得到的星座图如图 3 所示,图上注明了每一个点对应的 01 序列。
从上边的星座图上可以清楚的看到,任意相邻的两个点之间它们对应的 4 个 bit 中只有
一个有差别,也就是格雷码的特点。而采用格雷码主要目的是当信噪比较大时,也就是系统
的误码率比较低的情况下,当出现一个符号错误的情况下,往往只是这个符号中的一个 bit
位出现了误码,因此这个情况下误码率和误 bit 率是 4:1,这一特性在后边的误码率计算的
过程中会有应用。
插值
为了能够模拟高斯白噪声的宽频谱特性,以及为了能够显示波形生成器(平方根升余弦
滤波器)的效果,所以在原始信号中间添加一些 0 点。具体实现是分别在信号的 I 路和 Q 路
中,任意相邻的两个码字之间添加 7 个 0。源代码如下所示:
function y=insert_value(x,ratio)
%===============================
%x 是待插值的序列,ratio 是插值的比例。
%两路信号进行插值
%首先产生一个长度等于 ratio 倍原信号长度的零向量
y=zeros(1,ratio*length(x));
%再把原信号放在对应的位置
a=1:ratio:length(y);
y(a)=x;
I 路和 Q 路信号进行插值后的波形图如图 4 所示。
波形成形(平方根升余弦滤波器)
为了避免相邻传输信号之间的串扰,多元符号需要有合适的信号波形。图 1 中的方波是
在本地数字信号处理时常见的波形,但在实际传输时这种方波并不合适。根据奈奎斯特第一
准则,在实际通信系统中一般均使接收波形为升余弦滚降信号。这一过程由发送端的基带成
形滤波器和接收端的匹配滤波器两个环节共同实现,因此每个环节均为平方根升余弦滚降滤
波,两个环节合成就实现了一个升余弦滚降滤波。实现平方根升余弦滚降信号的过程称为“波
形成形”,通过采用合适的滤波器对多元码流进行滤波实现,由于生成的是基带信号,因此这
一过程又称“基带成形滤波”。
基带平方根升余弦滤波器具有以下定义的理论函数
下面给出平方根升余弦滤波器的冲激响应曲线,如图 5 所示。
从上图上不难看出来,平方根升余弦滤波器的冲激响应很显然的引入了符号间干扰(ISI)
即它的冲激响应在相邻的抽样点上的值并不象升余弦滤波器那样恒为 0。然而造成这一后果
的原因在于,当我们引入平方根升余弦滤波器的时候,就是认为整个信道,也就是说,包括
信号发送端的滤波器和信号接收端的滤波器,总体的效果是避免了符号间干扰(ISI),所以,
单独看这每一个滤波器,勿庸置疑,它们都是存在着符号间干扰(ISI)的。