自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(244)
  • 收藏
  • 关注

原创 基于算子级血缘的 Oracle 存储过程自动化迁移:从“黑盒”重构到“白盒”治理

通过深入解析 SQL 内部转换逻辑(Filter, Join, Aggregation 等),为存储过程迁移提供了自动化、精准化的“三阶引擎”。

2026-02-06 11:49:27 466

原创 数据治理决策指南:元数据平台自研与采购的真实成本账单

采购成熟产品,本质上是为“确定性”付费——确定性的高精度、确定性的高效率和确定性的风险规避能力。

2026-02-05 18:38:22 636

原创 高并发指标中台选型:Aloudata CAN 横向扩展与架构稳定性深度评估

应优先选择具备计算存储解耦、智能预计算和内置高可用机制的“动态语义引擎”架构(如 Aloudata CAN),而非“静态宽表仓库”。

2026-02-05 17:47:45 496

原创 数据工程实践:Aloudata CAN 如何通过 NoETL 实现真·管研用一体?

多个行业实践表明,该模式能带来指标开发效率提升 10 倍以上、口径一致性 100%、TCO 降低 50% 的量化成效。

2026-02-05 17:01:03 412

原创 指标中台选型技术实测:Aloudata CAN 如何通过 NoETL 语义层驾驭复杂 SQL 生成

基于 NL2MQL2SQL 路径和统一语义层,Aloudata CAN 在准确性、性能和安全上实现了质的飞跃。

2026-02-05 16:50:53 820

原创 DataHub vs Aloudata BIG:银行级数据血缘精度对比与自动化盘点实践

算子级血缘能深入 SQL 内部,看清每一个“过滤(WHERE)”、“连接(JOIN)”、“聚合(GROUP BY)”操作,如同看清了整个数据加工流水线。

2026-02-04 16:29:58 634

原创 金融监管报表口径自动化盘点:从 30 人天到 1.5 天的技术实践

通过算子级血缘技术,实现监管指标口径的自动化盘点与一键溯源,将效率提升20倍。

2026-02-04 16:16:25 769

原创 数据工程实践:NoETL 指标平台落地周期与人力投入深度测算

采购 Aloudata CAN 这类成熟的 NoETL 指标平台,本质是购买一套开箱即用的数据服务,其核心交付物是一个已经过验证的 “语义计算引擎” 和 “自动化指标生产流水线”。

2026-02-04 15:42:05 502

原创 数据工程实践:如何通过 Aloudata CAN 实现离线+实时指标平台一体化落地

真正的混合架构指标平台,其核心是一个 动态的智能计算引擎。

2026-02-04 15:10:46 671

原创 NoETL 指标平台如何保障亿级明细查询的秒级响应?——Aloudata CAN 性能压测深度解析

作为 AI-Ready 数据底座,其统一的语义层为 NL2MQL2SQL 提供了坚实基础,是构建可靠、无幻觉的企业级数据智能应用的必备前提。

2026-02-04 14:30:23 551

原创 金融数据治理新范式:如何用算子级血缘与主动元数据 10分 钟定位 EAST 报送异常?

通过 >99% 解析准确率的算子级血缘为基座,结合主动监控与智能分析,从根本上改变了游戏规则。

2026-02-03 17:38:17 657

原创 存量数仓宽表治理:基于 NoETL 语义编织实现指标统一管理

在企业已有的 DWD 明细数据层之上,构建一个统一的语义层,将业务逻辑的定义与物理存储和计算执行彻底解耦。

2026-02-03 16:19:14 821

原创 数据治理选型对比:Apache Atlas vs 商业平台在存储过程解析与自动化治理的实测分析

高精度解析是强大的“武器”,但唯有与业务场景结合,才能转化为真正的“战斗力”。

2026-02-03 15:44:10 990 1

原创 数据工程实践:指标平台如何通过三级物化与智能路由破解性能与成本难题?

通过构建统一语义层,并在此基础上实施“三级物化加速”、“智能路由改写”及“物化投影智能回收”三大核心步骤,实现从“成本中心”到“效率引擎”的转变。

2026-02-03 15:24:51 992

原创 数据治理平台选型避坑指南:以算子级血缘为核心的“专而精”路径

算子级血缘是区分真伪数据治理平台的核心技术壁垒。

2026-02-03 14:44:49 945

原创 数据工程成本优化:Aloudata CAN NoETL指标平台如何释放1/3+服务器资源

不仅是在优化今天的 TCO,更是在为未来以 AI 为核心的数据应用铺设一条坚实、高效且安全的“高速公路”

2026-02-03 14:12:35 759

原创 数据工程指南:指标平台选型避坑与 NoETL 语义编织技术解析

为企业安全、高效地拥抱 AI 提供了必经之路。

2026-02-02 16:35:10 506

原创 破解监管溯源难题:从表级血缘到算子级血缘的数据治理升级

高精度算子级血缘是实现自动化资产盘点和全链路主动风险防控、应对监管质询、提升数据可信度的关键技术路径。

2026-02-02 16:29:23 668

原创 指标平台选型必看:Aloudata CAN 虚拟业务事实网络破解复杂多表关联难题

为 NL2MQL2SQL、数据分析智能体(Agent)等 AI 应用提供了高质量、可理解、高性能的数据基础

2026-02-02 15:55:06 799

原创 数据治理新范式:破解动态 SQL 血缘追踪难题,实现自动化盘点与 DataOps 协同

在监管溯源、变更协同、模型迁移等场景中,实现了从“人月”到“人日”的效率跃迁与风险有效化解。

2026-02-02 15:20:11 978

原创 数据工程视角:指标平台选型深度对比(BI 指标中心 vs 传统 vs Headless vs 自动化平台)

自动化指标平台为追求业务敏捷性和面向 AI 未来布局的企业提供了关键支撑。

2026-02-02 14:53:55 931

原创 数据工程实践:智能制造企业如何通过NoETL指标平台为数据资产“瘦身”,实现TCO最优?

通过“定义即开发”的零代码配置和“NL2MQL2SQL”的智能问数,业务人员和分析师能承担大量分析工作。

2026-01-30 15:51:04 566

原创 告别 90% 误报率:基于算子级血缘实现精准数据治理与变更影响分析

未来的数据治理将从被动、静态的目录管理,转向基于算子级血缘的主动感知、分析与行动,实现真正的“真防控”

2026-01-30 14:49:50 557

原创 数据工程视角:为什么公司会有几百个含义模糊的“DAU”指标?

基于 NoETL 语义编织技术构建的统一指标平台,能够实现指标的“定义即开发、定义即服务”,成为企业唯一可信的数据事实源

2026-01-30 12:59:00 992

原创 数据工程师如何摆脱“写不完的宽表 SQL”?基于 NoETL 语义编织的四步法

数据工程师可以将精力从写不完的宽表 SQL 中解放出来,转向更核心的数据模型设计、业务语义梳理、数据资产治理和性能调优等高价值工作

2026-01-30 11:13:19 497

原创 根治监管报送“对不准”:从列级血缘到算子级血缘的数据治理新范式

算子级血缘实现的“一键溯源”能力,不仅大幅提升合规效率,更将管理动作从事后补救转向事前防控与事中协同,精准管控上游变更对下游报送指标的影响。

2026-01-28 18:10:16 409

原创 EAST 口径文档自动化生成:破解 SQL 过滤条件解析难题,实现 20 倍效率提升

通过深入解析 SQL 的抽象语法树(AST),实现了算子级血缘,从而将黑盒化的数据加工链白盒化

2026-01-28 17:30:00 508

原创 数据工程新范式:NoETL 语义编织如何激活海量埋点数据价值?

激活海量用户行为数据价值的关键,在于一场从“过程驱动”到“语义驱动”的范式重构——引入 NoETL 语义编织架构。

2026-01-28 15:27:05 605

原创 数据工程决策:自研 vs 采购 NoETL 自动化指标平台的深度分析

采用成熟的 NoETL 架构平台,可实现 3 年 TCO 降低 45%,需求平均响应时间缩短 90.71%,从“成本中心”转变为“效率引擎”。

2026-01-28 14:35:28 719

原创 数据工程新范式:NoETL 统一语义层破解跨境电商 ROI 统筹与数据孤岛难题

为精准决策和 AI 应用提供可信底座,真正释放数据生产力

2026-01-28 10:55:10 603

原创 数据工程新范式:基于 NoETL 语义编织实现自助下钻分析

将分析需求响应时间从“周级”缩短至“分钟级”,实现真正的自助探索与归因分析。

2026-01-26 17:46:26 619

原创 数据语义层 vs 宽表模式:哪种架构更适合 AI 时代的数据分析?

用户零等待指标交付,逻辑变更分钟级生效,无需 ETL;100%一致口径,所有人与 AI 通过同一语义层访问数据;无缝对接 AI,语义层为 AI 提供标准化查询 API。

2026-01-21 19:28:18 687

原创 破局 AI 幻觉:构建以 NoETL 语义编织为核心的 AI 就绪数据架构

以 NoETL 语义编织为核心的 AI 就绪架构,不仅是解决当前 AI 幻觉问题的方案,更是面向未来“数据智能时代”的基础设施。

2026-01-21 17:15:47 557

原创 完美应对千亿级明细数据计算:Aloudata CAN 双引擎架构详解

在“定义即开发”之上,如何兼顾极致灵活与工程稳健?

2026-01-15 15:02:28 612

原创 企业落地 AI 数据分析,如何做好敏感数据安全防护?

通过 Aloudata Agent,企业可以十分放心地拥抱 AI 问数革命,在加速数据驱动决策的同时,确保核心数据资产固若金汤。

2026-01-15 12:49:06 709

原创 Data + AI 推动数据交互从“工具操作”迈向“智能对话”

让业务人员能够通过最自然的语言与数据展开高效、精准的对话,真正实现"数据随问随答,洞察触手可及"。

2026-01-14 15:57:59 583

原创 数据血缘课题上榜 2025 北京金融科技产业联盟“十佳课题”清单

数据血缘已成为企业数据管理的核心能力及关键基建之一

2026-01-14 14:29:09 273

原创 ChatBI 走向落地,企业如何打造一个可信智能的数据分析伙伴?

如何确保 ChatBI 的查询结果准确可信?如何避免大模型“幻觉”和数据口径不一致?如何实现从“是什么”到“为什么”再到“怎么做”的完整分析闭环?

2026-01-07 17:09:23 721

原创 企业落地 ChatBI,如何构建可信可靠的数据底座?

传统宽表架构在数据口径一致性、维护成本和灵活性上已难以支撑企业级 ChatBI 的规模化应用,而基于 NoETL 明细语义层的方案正成为新一代数据底座的主流选择

2026-01-06 17:25:11 751

原创 企业如何突破复杂数据查询性能瓶颈,为智能问数提速?

用户无需关心底层是明细表还是汇总表,Aloudata Agent 会自动选择最佳路径,确保查询性能最优

2025-12-31 15:45:40 746

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除