本题为Leetcode上的困难题,给出了别人相应的题解,供自己和相关爱好者参考学习。
题目描述
请实现一个函数用来匹配包含'. '和'*'的正则表达式。模式中的字符'.'表示任意一个字符,而'*'表示它前面的字符可以出现任意次(含0次)。在本题中,匹配是指字符串的所有字符匹配整个模式。例如,字符串"aaa"与模式"a.a"和"ab*ac*a"匹配,但与"aa.a"和"ab*a"均不匹配。
示例 1:
输入:
s = "aa"
p = "a"
输出: false
解释: "a" 无法匹配 "aa" 整个字符串。
示例 2:
输入:
s = "aa"
p = "a*"
输出: true
解释: 因为 '*' 代表可以匹配零个或多个前面的那一个元素, 在这里前面的元素就是 'a'。因此,字符串 "aa" 可被视为 'a' 重复了一次。
示例 3:
输入:
s = "ab"
p = ".*"
输出: true
解释: ".*" 表示可匹配零个或多个('*')任意字符('.')。
示例 4:
输入:
s = "aab"
p = "c*a*b"
输出: true
解释: 因为 '*' 表示零个或多个,这里 'c' 为 0 个, 'a' 被重复一次。因此可以匹配字符串 "aab"。
示例 5:
输入:
s = "mississippi"
p = "mis*is*p*."
输出: false
//方法1 递归回溯
递推关系:
class Solution {
public:
bool isMatch(string s, string p) {
//方法1 递归回溯
if(p.empty()) return s.empty();
bool firstMatch = (!s.empty() && (s[0] == p[0] || p[0] == '.'));
// 从p的第2个字符开始,如果为 '*'
if (p.size() >= 2 && p[1] == '*') //第二个字符为*
//当第一个字符不匹配时,p串的前两个字符可以被忽略
//因此p需要分离前两个字符进行遍历,即isMatch(s, p.substr(2))
//当第一个字符匹配时,表示p串的前两个字符与s的第一个字符匹配
//而p串又可以表示第一个字符出现了多次,需要重新与后续序列匹配
//因此s需要分离第一个字符再进行遍历,即firstMatch && isMatch(s.substr(1), p)
return (isMatch(s, p.substr(2)) || (firstMatch && isMatch(s.substr(1), p)));
else
return firstMatch && isMatch(s.substr(1), p.substr(1));
}
};
上述的递归代码看似容易,实则难以理解,而本题还可以用动态规划进行解决,以下是来自别人的题解思路:
1. 状态
首先状态dp一定能自己想出来,dp[i][j]表示s的前i个是否能够被p的前j个匹配。
2. 转移方程
怎么想转移方程?首先想的时候从已经求出了 dp[i-1][j-1] 入手,再加上已知 s[i]、p[j],要想的问题就是怎么去求 dp[i][j]。
已知 dp[i-1][j-1] 意思就是前面子串都匹配上了,不知道新的一位的情况。
那就分情况考虑,所以对于新的一位 p[j] s[i] 的值不同,要分情况讨论:
(1)考虑最简单的 p[j] == s[i] : dp[i][j] = dp[i-1][j-1],然后从 p[j] 可能的情况来考虑,让 p[j]=各种能等于的东西。
(2)p[j] == "." : dp[i][j] = dp[i-1][j-1]
(3)p[j] ==" * ":
第一个难想出来的点:怎么区分 ∗*∗ 的两种讨论情况
首先给了 *,明白 * 的含义是 匹配零个或多个前面的那一个元素,所以要考虑他前面的元素 p[j-1]。* 跟着他前一个字符走,前一个能匹配上 s[i],* 才能有用,前一个都不能匹配上 s[i],* 也无能为力,只能让前一个字符消失,也就是匹配 000 次前一个字符。所以按照 p[j-1] 和 s[i] 是否相等,我们分为两种情况:
(1)p[j-1] != s[i] : dp[i][j] = dp[i][j-2]
这就是刚才说的那种前一个字符匹配不上的情况。比如(ab, abc * )。遇到 * 往前看两个,发现前面 s[i] 的 ab 对 p[j-2] 的 ab 能匹配,虽然后面是 c*,但是可以看做匹配 000 次 c,相当于直接去掉 c *,所以也是 True。注意 (ab, abc**) 是 False。
(2)p[j-1] == s[i] or p[j-1] == ".":
- * 前面那个字符,能匹配 s[i],或者 * 前面那个字符是万能的 .
- 因为 . * 就相当于 . .,那就只要看前面可不可以匹配就行。
- 比如 (##b , ###b *),或者 ( ##b , ### . * ) 只看 ### 后面一定是能够匹配上的。
- 所以要看 b 和 b * 前面那部分 ## 的地方匹不匹配。
第二个难想出来的点:怎么判断前面是否匹配
- dp[i][j] = dp[i-1][j] // 多个字符匹配的情况
- or dp[i][j] = dp[i][j-1] // 单个字符匹配的情况
- or dp[i][j] = dp[i][j-2] // 没有匹配的情况
看 ### 匹不匹配,不是直接只看 ### 匹不匹配,要综合后面的 b b* 来分析。这三种情况是 ororor 的关系,满足任意一种都可以匹配上,同时是最难以理解的地方:
dp[i-1][j] 就是看 s 里 b 多不多, ### 和 ###b * 是否匹配,一旦匹配,s 后面再添个 b 也不影响,因为有 * 在,也就是 ###b 和 ###b *也会匹配。
dp[i][j-1] 就是去掉 * 的那部分,###b 和 ###b 是否匹配,比如 qqb qqb
dp[i][j-2] 就是 去掉多余的 b *,p 本身之前的能否匹配,###b 和 ### 是否匹配,比如 qqb qqbb* 之前的 qqb qqb 就可以匹配,那多了的 b * 也无所谓,因为 b * 可以是匹配 000 次 b,相当于 b * 可以直接去掉了。
三种满足一种就能匹配上。为什么没有 dp[i-1][j-2] 的情况? 就是 ### 和 ### 是否匹配?因为这种情况已经是 dp[i][j-1] 的子问题。也就是 s[i]==p[j-1],则 dp[i-1][j-2]=dp[i][j-1]。
总结
如果 p.charAt(j) == s.charAt(i) : dp[i][j] = dp[i-1][j-1];
如果 p.charAt(j) == '.' : dp[i][j] = dp[i-1][j-1];
如果 p.charAt(j) == '*':
如果 p.charAt(j-1) != s.charAt(i) : dp[i][j] = dp[i][j-2] //in this case, a* only counts as empty
如果 p.charAt(i-1) == s.charAt(i) or p.charAt(i-1) == '.':
dp[i][j] = dp[i-1][j] //in this case, a* counts as multiple a
or dp[i][j] = dp[i][j-1] // in this case, a* counts as single a
or dp[i][j] = dp[i][j-2] // in this case, a* counts as empty
class Solution {
public:
bool isMatch(string s, string p) {
if (p.empty()) return s.empty();
// 前面加某一相同字符,
// 防止 (ab, c*ab) 这样的匹配,
// 避免复杂的初始化操作
s = " " + s;
p = " " + p;
int m = s.size(), n = p.size();
// 定义记忆数组,并初始化为false
vector<vector<bool>> dp(m + 1, vector<bool>(n + 1, false));
// 设添加的字符为真
dp[0][0] = true;
// 记忆数组能保持字符串上一个字符的状态
// 因此可以对下一个字符进行判断
for (int i = 1; i < m + 1; i++) {
for (int j = 1; j < n + 1; j++) {
// 不带 '*' 号时的匹配
if (s[i - 1] == p[j - 1] || p[j - 1] == '.')
dp[i][j] = dp[i - 1][j - 1];
else if (p[j - 1] == '*') {
// 考虑 '*' 时的两种情况
if (s[i - 1] != p[j - 2] && p[j - 2] != '.')
dp[i][j] = dp[i][j - 2];
else
dp[i][j] = dp[i][j - 2] || dp[i - 1][j];
}
}
}
// 返回最后字符的匹配状态
return dp[m][n];
}
};