LeetCode算法练习——回溯&&深搜(三)

LeetCode51. N皇后

皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。

给定一个整数 n,返回所有不同的 n 皇后问题的解决方案。每一种解法包含一个明确的 n 皇后问题的棋子放置方案,该方案中 'Q' 和 '.' 分别代表了皇后和空位。

示例:

输入: 4
输出: [
 [".Q..",  // 解法 1
  "...Q",
  "Q...",
  "..Q."],

 ["..Q.",  // 解法 2
  "Q...",
  "...Q",
  ".Q.."]
]
解释: 4 皇后问题存在两个不同的解法。

在建立算法之前,我们来考虑两个有用的细节。

  •     一行只可能有一个皇后且一列也只可能有一个皇后。这意味着没有必要再棋盘上考虑所有的方格。只需要按列循环即可。
  •     对于所有的主对角线有 行号 + 列号 = 常数,对于所有的次对角线有 行号 - 列号 = 常数。这可以让我们标记已经在攻击范围下的对角线并且检查一个方格 (行号, 列号) 是否处在攻击位置。
class Solution {
public:
    vector<vector<string>> res; 
    vector<vector<string>> solveNQueens(int n) {
        vector<string> board(n, string(n, '.'));
        dfs(board, 0);
        return res;
    }

    void dfs(vector<string>& board, int row){
        if(row == board.size()){                   //边界条件
            res.push_back(board);
            return;
        }
        int length = board[row].size();
        for(int col = 0; col < length; col++){
            if(!isValid(board, row, col)){        //不满足8皇后条件
                continue;
            }
            board[row][col] = 'Q';                //回溯模板
            dfs(board, row + 1);
            board[row][col] = '.';
        }
    }

    bool isValid(vector<string>& board, int row, int col){
        int length = board.size();
        //检查同列
        for(int i = 0; i < row; i++){
            if(board[i][col] == 'Q'){
                return false;
            }
        }
        //检查右上
        for(int i = row - 1, j = col + 1; i >= 0 && j < length; i--, j++){
            if(board[i][j] == 'Q'){
                return false;
            }
        }
        //检查左上
        for(int i = row - 1, j = col - 1; i >= 0 && j >= 0; i--, j--){
            if(board[i][j] == 'Q'){
                return false;
            }
        }
        return true;
    }
};

LeetCode93. 复原IP地址

给定一个只包含数字的字符串,复原它并返回所有可能的 IP 地址格式。有效的 IP 地址正好由四个整数(每个整数位于 0 到 255 之间组成),整数之间用 '.' 分隔。

示例:

输入: "25525511135"
输出: ["255.255.11.135", "255.255.111.35"]

dfs深度搜索思路,数值>255非法,以零开头长度大于等于2非法;不同于常规回溯思路,同层只用最多遍历3个数字,依次查看是否满足数值要求;各段的数值状态也是分段存储的,互不干涉,使用vector<string> path来存储;

class Solution {
public:
    bool isValid(string ip){                   //判断ip地址是否有效
        int val = stoi(ip);
        if (val > 255)    return false;        //值不能超过255
        if (ip.size() >= 2 && ip[0] == '0')    return false;
        //以0开头的除非数字是0本身,否则也是非法
        return true;
    }
    void dfs(string& s, int pos, vector<string> &path, vector<string>& res){
        //首先判断剩余的位数,是不是还能满足要求
        //比如25525511135,若2.5.5.25511135显然不满足,
        //这可以预判4组,每组最多3位数字
        int maxLen = (4 - path.size()) * 3;
        if (s.size() - pos > maxLen)    return;
        if (path.size() == 4 && pos == s.size()) {
            string str = "";
            for (int i = 0; i < 4; i++) {     //字符串拼接转换成地址
                str += path[i];
                if (i != 3)    str += ".";
            }
            res.push_back(str);
            return;
        }
        //回溯算法的典型模式,循环递归
        for (int i = pos; i < s.size() && i <= pos + 2; i++) {//同层最多遍历3个数字
            string ip = s.substr(pos, i - pos + 1);    //子串分割
            if (!isValid(ip))    continue;
            path.push_back(ip);
            dfs(s, i + 1, path, res);
            path.pop_back();
        }
    }
    vector<string> restoreIpAddresses(string s) {
        vector<string> res;
        if (s.size() == 0 || s.size() < 4)    return res;
        vector<string> path;
        //存储从根开始的到叶子节点的满足条件的路径
        //因为最多3位数字一组,所以同一层横向循环时尝试最多3个位的长度
        dfs(s, 0, path, res);
        return res;
    }
};

LeetCode22. 括号生成

数字 n 代表生成括号的对数,请你设计一个函数,用于能够生成所有可能的并且 有效的 括号组合。

示例:

输入:n = 3
输出:[
       "((()))",
       "(()())",
       "(())()",
       "()(())",
       "()()()"
     ]

括号是成对出现的,如果左括号数量不大于 n,我们可以放一个左括号;如果右括号数量小于左括号的数量,我们可以放一个右括号,当左右括号都用完时,得到答案,当左括号个数比右括号多时结束匹配,剩下需要用递归形式在tmp字符串上分别增加左右括号。

class Solution {
public:
    vector<string> res;
    void dfs(int left, int right, string tmp) {
        if (left == 0 && right == 0) {
            res.push_back(tmp);
            return ;
        }
        if (left > right || left < 0 || right < 0)  //左括号用的比右括号少
            return ;
        dfs(left - 1, right, tmp + '(');
        dfs(left, right - 1, tmp + ')');
    }
    vector<string> generateParenthesis(int n) {
        if(n == 0)  return res;
        string tmp;
        dfs(n, n, tmp);
        return res;
    }
};

LeetCode301. 删除无效的括号

删除最小数量的无效括号,使得输入的字符串有效,返回所有可能的结果。说明: 输入可能包含了除 ( 和 ) 以外的字符。

示例 1:

输入: "()())()"
输出: ["()()()", "(())()"]

示例 2:

输入: "(a)())()"
输出: ["(a)()()", "(a())()"]

示例 3:

输入: ")("
输出: [""]

思路:

  • 1、删除括号使得字符串有效,其实是可以知道有多少非法的左括号和右括号的,遍历一把就可以计算得到
  • 2、那就在原始字符串上面进行删除操作,遍历删除的字符位置[0, s.size()-1], 对应字符为左右括号时,分别递归
  • 3、当前删除位置需要传递给下一次迭代,因为每次其实删除一个字符后,字符串长度是减少1的,而删除的位置正好是下一次迭代中开始删除的首位。
  • 4、有个优化点,就是在循环删除的时候,如果下一个字符和上一次回溯结束后的字符一样时,不需要再重复处理
  • 5、左右括号删除满足条件时,检查字符串s是否有效
class Solution {
public:
    vector<string> res;
    vector<string> removeInvalidParentheses(string s) {
        //DFS算法
        int left = 0;
        int right = 0;
        for(char str : s){            //统计多余的左右括号
            if(str == '('){
                left++;
            }
            else if(str == ')'){
                if(left > 0)    left--;
                else    right++;
            }
            else continue;
        }
        // 深度优先遍历,寻找题解,left与right为不合法的左括号个数和右括号个数
        dfs(s, 0, left, right);
        return res;
    }
    void dfs(string s, int start, int left, int right){
        if(left == 0 && right == 0){
            if(isValid(s)){
                res.push_back(s);
            }
            return;
        }
        for(int i = start; i < s.size(); i++){
            if(i - 1 >= start && s[i] == s[i - 1])   continue;                    
            if(left > 0 && s[i] == '('){        //左括号多余且该括号为左括号
                dfs(s.substr(0, i) + s.substr(i + 1), i, left - 1, right);
                //将字符串进行左右分割去遍历,找出多余的括号
            }
            if(right > 0 && s[i] == ')'){       //右括号多余且该括号为右括号
                dfs(s.substr(0, i) + s.substr(i + 1), i, left, right - 1);
            }
        }
    }
    
    bool isValid(string s) {                    //利用栈进行括号匹配
        stack<char> st;
        for(int i = 0; i < s.size(); i++){
            if(s[i] == '(')
                st.push(s[i]);  
            else if(s[i] == ')') {
                if(st.empty())  return false; 
                if( st.top() == '(')
                    st.pop();
                else    return false;
            }
            else continue;
        }
        if(st.empty()) return true;
        else    return false;
    }
};

此题还试着用了BFS去解决,方法如下:

class Solution {
public:
    //BFS算法
    vector<string> removeInvalidParentheses(string s) {       
        vector<string> res;
        unordered_set<string> visited{{s}};
        queue<string> q{{s}};
        bool flag = false;
        while (!q.empty()) {
            string tmp = q.front();
            q.pop();
            if (isValid(tmp)) {
                res.push_back(tmp);
                flag = true;
            }
            if(flag) continue;
            for (int i = 0; i < tmp.size(); i++) {
                if (tmp[i] != '(' && tmp[i] != ')') continue;               
                //过滤非括号内容
                string str = tmp.substr(0, i) + tmp.substr(i + 1);          
                //对字符串进行切割
                if (!visited.count(str)) {                                  
                //将去除一个符号的字符串入队
                    q.push(str);
                    visited.insert(str);
                }
            }
        }
        return res;
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值