LeetCode51. N皇后
n 皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。
给定一个整数 n,返回所有不同的 n 皇后问题的解决方案。每一种解法包含一个明确的 n 皇后问题的棋子放置方案,该方案中 'Q' 和 '.' 分别代表了皇后和空位。
示例:
输入: 4
输出: [
[".Q..", // 解法 1
"...Q",
"Q...",
"..Q."],
["..Q.", // 解法 2
"Q...",
"...Q",
".Q.."]
]
解释: 4 皇后问题存在两个不同的解法。
在建立算法之前,我们来考虑两个有用的细节。
- 一行只可能有一个皇后且一列也只可能有一个皇后。这意味着没有必要再棋盘上考虑所有的方格。只需要按列循环即可。
- 对于所有的主对角线有 行号 + 列号 = 常数,对于所有的次对角线有 行号 - 列号 = 常数。这可以让我们标记已经在攻击范围下的对角线并且检查一个方格 (行号, 列号) 是否处在攻击位置。
class Solution {
public:
vector<vector<string>> res;
vector<vector<string>> solveNQueens(int n) {
vector<string> board(n, string(n, '.'));
dfs(board, 0);
return res;
}
void dfs(vector<string>& board, int row){
if(row == board.size()){ //边界条件
res.push_back(board);
return;
}
int length = board[row].size();
for(int col = 0; col < length; col++){
if(!isValid(board, row, col)){ //不满足8皇后条件
continue;
}
board[row][col] = 'Q'; //回溯模板
dfs(board, row + 1);
board[row][col] = '.';
}
}
bool isValid(vector<string>& board, int row, int col){
int length = board.size();
//检查同列
for(int i = 0; i < row; i++){
if(board[i][col] == 'Q'){
return false;
}
}
//检查右上
for(int i = row - 1, j = col + 1; i >= 0 && j < length; i--, j++){
if(board[i][j] == 'Q'){
return false;
}
}
//检查左上
for(int i = row - 1, j = col - 1; i >= 0 && j >= 0; i--, j--){
if(board[i][j] == 'Q'){
return false;
}
}
return true;
}
};
LeetCode93. 复原IP地址
给定一个只包含数字的字符串,复原它并返回所有可能的 IP 地址格式。有效的 IP 地址正好由四个整数(每个整数位于 0 到 255 之间组成),整数之间用 '.' 分隔。
示例:
输入: "25525511135"
输出: ["255.255.11.135", "255.255.111.35"]
dfs深度搜索思路,数值>255非法,以零开头长度大于等于2非法;不同于常规回溯思路,同层只用最多遍历3个数字,依次查看是否满足数值要求;各段的数值状态也是分段存储的,互不干涉,使用vector<string> path来存储;
class Solution {
public:
bool isValid(string ip){ //判断ip地址是否有效
int val = stoi(ip);
if (val > 255) return false; //值不能超过255
if (ip.size() >= 2 && ip[0] == '0') return false;
//以0开头的除非数字是0本身,否则也是非法
return true;
}
void dfs(string& s, int pos, vector<string> &path, vector<string>& res){
//首先判断剩余的位数,是不是还能满足要求
//比如25525511135,若2.5.5.25511135显然不满足,
//这可以预判4组,每组最多3位数字
int maxLen = (4 - path.size()) * 3;
if (s.size() - pos > maxLen) return;
if (path.size() == 4 && pos == s.size()) {
string str = "";
for (int i = 0; i < 4; i++) { //字符串拼接转换成地址
str += path[i];
if (i != 3) str += ".";
}
res.push_back(str);
return;
}
//回溯算法的典型模式,循环递归
for (int i = pos; i < s.size() && i <= pos + 2; i++) {//同层最多遍历3个数字
string ip = s.substr(pos, i - pos + 1); //子串分割
if (!isValid(ip)) continue;
path.push_back(ip);
dfs(s, i + 1, path, res);
path.pop_back();
}
}
vector<string> restoreIpAddresses(string s) {
vector<string> res;
if (s.size() == 0 || s.size() < 4) return res;
vector<string> path;
//存储从根开始的到叶子节点的满足条件的路径
//因为最多3位数字一组,所以同一层横向循环时尝试最多3个位的长度
dfs(s, 0, path, res);
return res;
}
};
LeetCode22. 括号生成
数字 n 代表生成括号的对数,请你设计一个函数,用于能够生成所有可能的并且 有效的 括号组合。
示例:
输入:n = 3
输出:[
"((()))",
"(()())",
"(())()",
"()(())",
"()()()"
]
括号是成对出现的,如果左括号数量不大于 n,我们可以放一个左括号;如果右括号数量小于左括号的数量,我们可以放一个右括号,当左右括号都用完时,得到答案,当左括号个数比右括号多时结束匹配,剩下需要用递归形式在tmp字符串上分别增加左右括号。
class Solution {
public:
vector<string> res;
void dfs(int left, int right, string tmp) {
if (left == 0 && right == 0) {
res.push_back(tmp);
return ;
}
if (left > right || left < 0 || right < 0) //左括号用的比右括号少
return ;
dfs(left - 1, right, tmp + '(');
dfs(left, right - 1, tmp + ')');
}
vector<string> generateParenthesis(int n) {
if(n == 0) return res;
string tmp;
dfs(n, n, tmp);
return res;
}
};
LeetCode301. 删除无效的括号
删除最小数量的无效括号,使得输入的字符串有效,返回所有可能的结果。说明: 输入可能包含了除 (
和 )
以外的字符。
示例 1:
输入: "()())()"
输出: ["()()()", "(())()"]
示例 2:
输入: "(a)())()"
输出: ["(a)()()", "(a())()"]
示例 3:
输入: ")("
输出: [""]
思路:
- 1、删除括号使得字符串有效,其实是可以知道有多少非法的左括号和右括号的,遍历一把就可以计算得到
- 2、那就在原始字符串上面进行删除操作,遍历删除的字符位置[0, s.size()-1], 对应字符为左右括号时,分别递归
- 3、当前删除位置需要传递给下一次迭代,因为每次其实删除一个字符后,字符串长度是减少1的,而删除的位置正好是下一次迭代中开始删除的首位。
- 4、有个优化点,就是在循环删除的时候,如果下一个字符和上一次回溯结束后的字符一样时,不需要再重复处理
- 5、左右括号删除满足条件时,检查字符串s是否有效
class Solution {
public:
vector<string> res;
vector<string> removeInvalidParentheses(string s) {
//DFS算法
int left = 0;
int right = 0;
for(char str : s){ //统计多余的左右括号
if(str == '('){
left++;
}
else if(str == ')'){
if(left > 0) left--;
else right++;
}
else continue;
}
// 深度优先遍历,寻找题解,left与right为不合法的左括号个数和右括号个数
dfs(s, 0, left, right);
return res;
}
void dfs(string s, int start, int left, int right){
if(left == 0 && right == 0){
if(isValid(s)){
res.push_back(s);
}
return;
}
for(int i = start; i < s.size(); i++){
if(i - 1 >= start && s[i] == s[i - 1]) continue;
if(left > 0 && s[i] == '('){ //左括号多余且该括号为左括号
dfs(s.substr(0, i) + s.substr(i + 1), i, left - 1, right);
//将字符串进行左右分割去遍历,找出多余的括号
}
if(right > 0 && s[i] == ')'){ //右括号多余且该括号为右括号
dfs(s.substr(0, i) + s.substr(i + 1), i, left, right - 1);
}
}
}
bool isValid(string s) { //利用栈进行括号匹配
stack<char> st;
for(int i = 0; i < s.size(); i++){
if(s[i] == '(')
st.push(s[i]);
else if(s[i] == ')') {
if(st.empty()) return false;
if( st.top() == '(')
st.pop();
else return false;
}
else continue;
}
if(st.empty()) return true;
else return false;
}
};
此题还试着用了BFS去解决,方法如下:
class Solution {
public:
//BFS算法
vector<string> removeInvalidParentheses(string s) {
vector<string> res;
unordered_set<string> visited{{s}};
queue<string> q{{s}};
bool flag = false;
while (!q.empty()) {
string tmp = q.front();
q.pop();
if (isValid(tmp)) {
res.push_back(tmp);
flag = true;
}
if(flag) continue;
for (int i = 0; i < tmp.size(); i++) {
if (tmp[i] != '(' && tmp[i] != ')') continue;
//过滤非括号内容
string str = tmp.substr(0, i) + tmp.substr(i + 1);
//对字符串进行切割
if (!visited.count(str)) {
//将去除一个符号的字符串入队
q.push(str);
visited.insert(str);
}
}
}
return res;
}
}