莫比乌斯反演

莫比乌斯函数是定义在 N + \mathbb N^+ N+上的函数 μ μ μ

考虑将 n n n进行分解质因数:
n = ∏ i = 1 m a i p i n=∏_{i=1}^ma_i^{p_i} n=i=1maipi
得到该函数的通解:
μ ( n ) = { 1 n = 1 0 ∃ i ∈ [ 1 , m ]   p i ≥ 2 ( − 1 ) m ∀ i ∈ [ 1 , m ]   p i &lt; 2 μ(n)=\begin{cases}1&amp;n=1\\0&amp;∃i∈[1,m]\ p_i≥2\\(-1)^m&amp;∀i∈[1,m]\ p_i&lt;2\end{cases} μ(n)=10(1)mn=1i[1,m] pi2i[1,m] pi<2

莫比乌斯函数

对于该函数,我们有三个性质:

  • 性质 1 1 1: ∑ d ∣ n μ ( d ) = [ n = 1 ] \sum\limits_{d|n}μ(d)=[n=1] dnμ(d)=[n=1]

  • 性质 2 2 2:若 ( m , n ) = 1 (m,n)=1 (m,n)=1,则 μ ( m n ) = μ ( m ) ⋅ μ ( n ) μ(mn)=μ(m)\cdot μ(n) μ(mn)=μ(m)μ(n)

  • 性质 3 3 3: 莫比乌斯反演定理

根据二项式定理,我们可以证明性质 1 1 1:

n = 1 n=1 n=1时,显然有 ∑ d ∣ n μ ( d ) = μ ( 1 ) = 1 \sum\limits_{d|n}μ(d)=μ(1)=1 dnμ(d)=μ(1)=1

  • 所有满足条件的 d d d的值,都可以化为由 n n n的质因子的乘积的形式。
  • 考虑一下,若选择 k k k个质因子作为 d d d的值,则有 C m k C_m^k Cmk种选法
  • k k k 0 0 0时,满足条件的 d d d的值为 1 1 1
  • 于是我们可以将其恒等变形。

∑ d ∣ n μ ( d ) = μ ( a 1 ) + μ ( a 2 ) + . . . + μ ( a m ) + μ ( a 1 a 2 ) + . . + μ ( a 1 a 2 a 3 . . . a n ) \sum\limits_{d|n}μ(d)=μ(a_1)+μ(a_2)+...+μ(a_m)+μ(a_1a_2)+..+μ(a_1a_2a_3...a_n) dnμ(d)=μ(a1)+μ(a2)+...+μ(am)+μ(a1a2)+..+μ(a1a2a3...an)
= ∑ k = 0 m ( − 1 ) k C m k = 0 ( n &gt; 1 )                                               =\sum_{k=0}^m(-1)^kC_m^k=0(n&gt;1)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =k=0m(1)kCmk=0(n>1)                                             

关于性质 2 2 2的证明,网上资料较为隐晦,这里给出证明过程:

令:
m = ∏ i = 1 k 1 a i p i m=∏_{i=1}^{k_1}a_i^{p_i} m=i=1k1aipi
n = ∏ i = 1 k 2 b i q i n=∏_{i=1}^{k_2}b_i^{q_i} n=i=1k2biqi
设有正整数 i , j ( i ∈ [ 1 , k 1 ] , j ∈ [ 1 , k 2 ] ) i,j(i\in[1,k_1],j\in[1,k_2]) i,j(i[1,k1],j[1,k2])

( m , n ) = 1 (m,n)=1 (m,n)=1可知:   ∄ a i = b j \ \nexists a_i=b_j  ai=bj,于是我们有:
m n = ∏ i = 1 k 1 a i p i ⋅ ∏ i = 1 k 2 b i q i mn=∏_{i=1}^{k_1}a_i^{p_i}\cdot ∏_{i=1}^{k_2}b_i^{q_i} mn=i=1k1aipii=1k2biqi
考虑 p , q p,q p,q的取值:

  • ∃ p ≥ 2 ∃p≥2 p2 q ≥ 2 q≥2 q2,则 μ ( m n ) = 0 = μ ( m ) ⋅ μ ( n ) μ(mn)=0=μ(m)\cdot μ(n) μ(mn)=0=μ(m)μ(n)
  • 其余情况易证,依据定义,我们有:

μ ( m n ) = ( − 1 ) k 1 + k 2 = ( − 1 ) k 1 ( − 1 ) k 2 = μ ( m ) ⋅ μ ( n ) μ(mn)=(-1)^{k_1+k_2}=(-1)^{k_1}(-1)^{k_2}=μ(m)\cdot μ(n) μ(mn)=(1)k1+k2=(1)k1(1)k2=μ(m)μ(n)
证毕。

莫比乌斯反演:

有一组定义在 N + \mathbb N^+ N+上的函数 F ( n ) F(n) F(n) f ( n ) f(n) f(n),令它们满足:
F ( n ) = ∑ d ∣ n f ( n ) F(n)=\sum_{d|n}f(n) F(n)=dnf(n)
看出 F ( n ) F(n) F(n) f ( n ) f(n) f(n)和函数,现在我们将其反演,得到一个猜想
f ( n ) = ∑ d ∣ n μ ( d ) F ( n d ) f(n)=\sum_{d|n}μ(d)F\bigg(\frac{n}{d}\bigg) f(n)=dnμ(d)F(dn)
这就是莫比乌斯反演定理

考虑将其恒等变形,我们可以得到:
∑ d ∣ n μ ( d ) F ( n d ) = ∑ d ∣ n μ ( d ) ∑ d ′ ∣ n d f ( d ′ ) \sum_{d|n}μ(d)F\bigg(\frac{n}{d}\bigg)=\sum_{d|n}μ(d)\sum_{d&#x27;|\frac{n}{d}}f(d&#x27;) dnμ(d)F(dn)=dnμ(d)ddnf(d)
利用乘法分配率,又有:
∑ d ∣ n μ ( d ) ∑ d ′ ∣ n d f ( d ′ ) = ∑ d ∣ n ∑ d ′ ∣ n d μ ( d ) f ( d ′ ) \sum_{d|n}μ(d)\sum_{d&#x27;|\frac{n}{d}}f(d&#x27;)=\sum_{d|n}\sum_{d&#x27;|\frac{n}{d}}μ(d)f(d&#x27;) dnμ(d)ddnf(d)=dnddnμ(d)f(d)
于是:
∑ d ∣ n ∑ d ′ ∣ n d μ ( d ) f ( d ′ ) = ∑ d ∣ n f ( d ) ∑ d ′ ∣ n d μ ( d ′ ) \sum_{d|n}\sum_{d&#x27;|\frac{n}{d}}μ(d)f(d&#x27;)=\sum_{d|n}f(d)\sum_{d&#x27;|\frac{n}{d}}μ(d&#x27;) dnddnμ(d)f(d)=dnf(d)ddnμ(d)
考虑到性质 1 1 1:
∑ d ∣ n μ ( d ) = [ n = 1 ] = { 1 n = 1 0 n &gt; 1 \sum_{d|n}μ(d)=[n=1]=\begin{cases}1&amp;n=1\\0&amp;n&gt;1\end{cases} dnμ(d)=[n=1]={10n=1n>1
代入原式,因为有且仅有 n ∣ n n|n nn n n = 1 \frac{n}{n}=1 nn=1,所以:
∑ d ∣ n f ( d ) ∑ d ′ ∣ n d μ ( d ′ ) = f ( n ) \sum_{d|n}f(d)\sum_{d&#x27;|\frac{n}{d}}μ(d&#x27;)=f(n) dnf(d)ddnμ(d)=f(n)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值