动态规划之背包问题-详解优化

背包问题

背包问题多变灵活,下面介绍两种常见的背包问题:01背包和完全背包问题。在正式开始解释之前,我要引入一个非常重要的概念:多阶段动态规划问题

多阶段动态规划问题

动态规划问题通常都具有时间或空间上的次序性,因此求解这类问题时,首先要将问题按一定的次序划分成若干相互联系的阶段。

01背包

所谓01背包就是指☞,一件物体因为只有一件,所以只有两种状态:取或不取。

例题

给定 n 种物品和一个容量为 C 的背包,物品 i 的重量是 wi,其价值为 vi ,每个物品只有一件。

测试样例
5 8        n  c
3 5 1 2 2   w[]
4 5 2 1 3   V[]
输出样例
10

解题思路

解释,设二维数组dp[i][v]表示用前i件物品装入质量为v时的最大价值,而dp[0][v]就为0;
因此可以得到状态转移方程

						//选第i件,从背包中去除w[i]空间,
dp[i][v]=max(dp[i-1][v],dp[i-1][v-w[i]]+V[i]);
             //不选第i件,        
==========
动态  
for(int i=1;i<=n;i++){
	for(int j=w[i];j<=m;j++){
		dp[i][j]=max(dp[i-1][j],dp[i-1][j-w[i]]+c[i]);
	}
}

由此可以得到01背包的示意图
在这里插入图片描述

空间优化

我们不难看出,对于dp[i][v],它的值只与dp[i-1]的两个数据有关,而到i+1时,dp[i-1]又没有用了,所以可以直接开个一维数组dp[i],表示装重量为i的元素的最大值;

于是可得如下代码:

for(int i=1;i<=n;i++){
		for(int j=v;j>=w[i];j--){
			dp[j]=max(dp[j],dp[j-w[i]]+c[i]);	
		}
	} 

需要注意的是: 重量的遍历必须要保证逆序,因为如果是正序的话,在遍历dp[v]时,dp[v-w[i]]是已经用w[i]更新过的值,也就意味着第i个物品的数量不唯一,与题目矛盾。

完全背包

完全背包问题与01背包问题的最大区别就是01背包中的每个物品数量有且只有1个,而完全背包中每个物品可以有无限个

解题思路

根据上面01背包问题的分析,可以得到如下的状态转移方程

dp[i][v]=max(dp[i-1][v],dp[i][v-w[i]]+c[i])01背包的区别就在于,转移的状态是dp[i][v-w[i]],因为完全背包中每个物品的数量是无限的,可以多次放第i件物品;

空间优化

for(int i=1;i<=n;i++){
		for(int j=w[i];j<=v;j++){
			dp[j]=max(dp[j],dp[j-w[i]]+c[i]);	
		}
	} 
/*
因为第i件物品的数量不唯一,所以应正序遍历;
*/

例题

完全背包的变型:
https://blog.csdn.net/alpha_xia/article/details/115555699
01背包问题:
https://blog.csdn.net/alpha_xia/article/details/115598319
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

高冷小伙

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值