Vosviewer keywords mapping

本文探讨了VOSviewer软件中作者关键词(AuthorKeywords)与KeywordsPlus的区别,强调了理解和运用这些类型关键词在学术文献可视化和研究分析中的关键作用,帮助读者优化信息检索和论文地图构建。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Vosviewer keywords mapping

In VOSviewer: you can create a map based on the

  • all keywords: all the keywords
  • author keywords* – the keywords given by the authors
  • key words plus: those extracted from the titles of the cited references by Thomson Reuters. Keywords Plus, generated by an automatic computer algorithm, are words or phrases that appear frequently in the titles of an article’s references and not necessarily in the title of the article or as Author Keywords (Garfield, 1990; Garfield & Sher, 1993).

在这里插入图片描述

While you are using the software, understanding the meaning of these keywords types is important to analyse your literature.

### 使用 VOSviewer 进行 Web of Science 数据的关键词聚类分析 #### 准备工作 为了使用 VOSviewer 对 Web of Science 的数据进行关键词聚类分析,需先从 Web of Science 下载所需的数据。选择【Web of Science核心合集】并设定特定的主题(例如:“artificial intelligence” 和 “python”)、时间范围(如最近五年),完成这些设置后点击【检索】以获取相关文献记录[^3]。 #### 导入数据到 VOSviewer 下载完成后,保存文件为纯文本格式 (.txt),该文件可以直接被 VOSviewer 所读取。启动 VOSviewer 后,在主界面中选择“Create (construct a map)”选项卡下的“Thesaurus-based mapping”,接着按照提示导入之前准备好的 .txt 文件作为输入源[^1]。 #### 构建同义词表 对于更精确的结果展示,可以构建一个自定义的同义词表(thesarus file) 来处理可能存在的重复项或者不同形式表达相同概念的情况。此功能位于软件附带的手册第4.3章节中有详细介绍;它支持合并相似条目比如作者姓名、机构名称或是关键词的不同版本表示法[^2]。 #### 关键词共现网络创建 当一切就绪之后,转至“Mapping type”的下拉菜单里挑选“Co-occurrence network”。这里可以选择绘制基于文章标题加摘要中的术语(Terms from titles and abstracts) 或者仅限于关键词(Keywords only)之间的关联关系图谱。调整参数直至满意为止,这一步骤决定了最终呈现出来的集群效果。 #### 可视化与解释结果 最后,利用VOSviewer提供的多种可视化方式——包括但不限于传统的节点链接图(Node-link diagram)、密度分布(Density view)以及覆盖层视图(Overlay view)—来探索生成的地图。通过观察各个簇群的位置及其相互间的连接强度,能够深入了解所选领域内的热点话题和发展趋势。 ```python # 示例 Python 代码用于自动化部分流程(非必需) import os from vos_viewer import create_map, load_thesaurus_file def prepare_vos_data(input_path, output_dir): # 加载同义词表 thesaurus = load_thesaurus_file('path/to/your/thesaurus.txt') # 创建映射 result = create_map( input_file=input_path, output_directory=output_dir, mapping_type='co_occurrence', source='web_of_science', terms_from_titles_and_abstracts=True, use_thesaurus=thesaurus ) return result ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值