信贷风控模型是金融机构风险管理的核心工具,在信贷风险管理工作中扮演着至关重要的角色。随着信贷市场的环境不断变化,信贷业务的风险日趋复杂化和隐蔽化,开发和应用准确高效的信贷风控模型显得尤为重要。信贷风险控制面临着越来越大的挑战和压力,也对风控模型的性能提出了更高的要求。
信贷风控模型对信贷业务的重要性不言而喻。风控模型综合评估申请客户的信用历史、财务状况以及行为数据等维度,进行量化分析和建模,以信用评分的形式量化申请人的逾期风险。拥有可靠的风控模型,金融机构便可科学地量化和管理信贷风险,从而有效控制信贷资产的风险水平,切实保障机构自身信贷业务的稳健运营。
随着数据科学和人工智能技术的不断发展,信贷领域风控模型的算法和建模技术也在不断创新和进步。算法层面从传统统计模型到机器学习模型,再到复杂的深度学习模型和当下流行的大模型技术,特征层面从基础业务逻辑特征到时序特征再到图谱深度关联特征,均不断提升信贷风控模型的精度和风险识别能力,为风险控制提供更强大的工具支持。
那么,如何高效构建信贷风控模型?
某互联网银行的风控模型主管本期为我们带来他的经验分享,让我们来看看他是如何“省力”工作的吧~
01、信贷风控模型是如何构建的?
在信贷风控模型的开发过程中,通常包括以下几个关键步骤:数据收集与探索、数据清洗、特征工程、模型选择、模型训练、模型评估与验证、模型部署与监控。
本系列的前序文章《数据探索》、《数据清洗》、《特征加工组合》已经对前三个环节进行了介绍,在完成探索性数据分析、数据清洗、特征组合挖掘等环节后,接下来就是信贷模型核心开发环节——包括模型选择、模型训练、模型评估与验证,以及评审通过后的模型部署和监控。
模型选择
信贷风控模型常用的模型包括逻辑回归、决策树、随机森林、梯度提升决策树(XGBoost、LightGBM等