降阶模型 ROM
降阶模型ROM(Reduced Order Models)是一种对高保真度静态或动态模型的简化方法。模型降阶在保留了模型的基本特性与主导效应的同时,大大减少复杂模型的CPU计算时间及存储空间。
ROM的用途:
-
加速大规模系统的仿真速度
-
将ROM运行在硬件在环环境
-
数字孪生 Digital twins
降阶方法:
-
静态:曲线、曲面拟合,查表法
-
动态: 通过一个高保真度模型来生成样本,机器学习算法训练样本模型
romAI 介绍
romAI是集成在 Altair 系统控制模块Activate和可视化编程模块Compose的模型降阶工具,用于加速大模型的预测,系统集成和实时控制。
romAI基于多层感知机技术Multilayer Perceptron (MLP),因此,从本质上讲,它在内部生成输入和输出之间的映射。这种映射的质量将取决于一些因素,例如训练样本的质量和数量,超参数的选择(神经网络隐藏层数或激活函数等等),以及可用于训练样本的时间。
romAI基于数据驱动,给定一个任意物理问题,使用任意软件建模。使用过程非常简单:首先,读入训练样本*csv,样本由输入、输出和系统状态组成。样本可以来自仿真结果或实验测试。然后根据这些数据和选定的超参数训练神经网络。训练好的ROM可以应用于Activate进行系统级仿真, 或通过FMI接口部署在其他的系统。
romAI 使用流程
案例1:CFD管路模型降阶
打开Activate模块,在Demo Browser目录下找到 romAI → nolinear → cfd_heated_pipe,这是一个简单的CFD管路加热模型,包含了一个输入变量:固体的发热功率Pel;一个输出变量:管路出口空气温度Tout;以及一个状态变量:固体的表面温度The
Activate中的CFD模型降阶例题
训练样本的数据来自AcuSolve的三维瞬态CFD仿真,CFD模型的时间步长为0.01秒,物理时间32秒,迭代3200步。
训练样本
CFD输入:固体发热功率