
深度学习驱动流体力学
文章平均质量分 90
深度学习驱动流体力学干货专栏、从入门到精通
优惠券已抵扣
余额抵扣
还需支付
¥99.90
¥299.90
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
源代码杀手
大厂算法工程师经验、高校教师。
互相学习,共同进步!想做项目,私聊需求。
展开
-
Transformer 跨界物理建模:探索模拟动态物理系统方法与实践(PINN、流体力学、有限元)
是一个由 Nicholas Zabaras 团队开发的开源项目,托管于 GitHub,旨在将 Transformer 模型(最初在自然语言处理领域大获成功)应用于物理系统的建模与预测。该项目基于论文 *“Transformers for Modeling Physical Systems”*(Neural Networks, 2022),探索了深度学习中的 Transformer 架构如何通过自注意力机制和 Koopman 嵌入来模拟动态物理系统。原创 2025-03-31 11:06:51 · 487 阅读 · 0 评论 -
【最新】探索CFD的未来:从OpenFOAM到深度学习,全面解析计算流体力学的顶级资源与前沿技术
计算流体力学(CFD)作为现代工程与科学研究的核心工具,正以前所未有的速度迈向智能化与多物理场耦合的新时代。本文全面梳理了在线学习CFD的顶级资源,涵盖了从传统数值模拟到深度学习驱动的物理信息模型的广泛领域,旨在为研究者、工程师和学生提供一站式参考指南。内容分为七大核心类别,囊括了数百个高质量资源链接,涉及代码、论文、教程和工具。首先,在领域,介绍了前沿项目如Gym-preCICE(),展示了深度强化学习如何与OpenFOAM结合;)提供了构建Physics-ML模型的开源框架;原创 2025-03-31 11:01:37 · 248 阅读 · 0 评论 -
SPHinXsys:基于平滑粒子流体动力学的多物理场仿真利器
SPHinXsys(读作“s’fink-sis”)是“工业复杂系统的平滑粒子流体动力学”。该项目由 Xiangyu Hu 领导,隶属于 xAI 公司,是一个基于 C++ 的开源多物理场、多分辨率仿真库,旨在为工程仿真和优化提供强大工具。其核心目标是解决由流体、结构、多体动力学等驱动的复杂系统问题,适用于工业和科学应用。SPHinXsys 采用平滑粒子流体动力学(SPH)作为基础数值方法,这是一种无网格方法,通过粒子离散化模拟连续介质的物理行为。原创 2025-03-31 10:48:10 · 166 阅读 · 0 评论 -
深度强化学习在二维圆柱体流控制中的应用:Cylinder2DFlowControlDRL 项目分析
项目参考:https://github.com/jerabaul29/Cylinder2DFlowControlDRL25个网页将对 GitHub 项目Jean Rabault(jerabaul29)等人开发的一个开源项目,旨在使用深度强化学习(Deep Reinforcement Learning, DRL)对二维卡门涡街(Kármán Vortex Street)进行主动流控制(Active Flow Control)。原创 2025-03-31 10:42:27 · 59 阅读 · 0 评论 -
【深度学习驱动流体力学】DeepONet求解三维瞬态固体力学的实现方法与完整代码实验结果展示
下面的实验结果参考结构为:引用自Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators。原创 2025-03-19 09:21:48 · 309 阅读 · 0 评论 -
【基于OpenFOAM的HybridCentralSolvers库:气体动力学与两相流模拟的开源利器】混合 Central 求解器的联合集合 - 单相、双相和多组件版本
是基于 OpenFOAM 的一个强大开源库,专注于气体动力学、准气体动力学(QGD)及两相流模拟,依托 Kurganov-Tadmor 中心逆风方案和 LTS 支持,提供从单相到多组分的全面求解能力。该库自 2018 年起支持 OpenFOAM+ 版本,包含如(单相可压缩流)、(两相流,0-4 马赫数)和(燃烧与化学反应)等求解器,广泛应用于航空航天(如火箭羽流、超音速喷流噪声)、能源(如氢气爆轰)和工业过程优化。原创 2025-03-11 18:11:19 · 188 阅读 · 0 评论 -
【论文全文翻译、剖析+代码复现】一种新基于PINN的机器学习算法来模拟辐射传输
这篇论文提出了一个新的方法,利用物理信息神经网络(PINN)来模拟辐射传输。辐射传输在许多领域中都有广泛应用,例如天文学、气候模型、辐射热传输等,但传统的数值方法(如有限差分、有限元法等)通常需要大量的计算资源,并且对于复杂的几何和物理条件的处理不够灵活。为了克服这些挑战,作者提出了基于PINN的算法。原创 2025-01-22 02:33:13 · 915 阅读 · 0 评论 -
DeepXDE:科学计算与PINN物理信息神经网络的深度学习库
DeepXDE 是一个用于科学机器学习和物理信息学习(Physics-Informed Learning)的库,主要用于解决各种偏微分方程(PDEs)、常微分方程(ODEs)、积分微分方程(IDEs)等数学问题。该库支持多种前沿的物理信息神经网络(PINNs)方法,并且能够有效地处理不同类型的物理建模任务。DeepXDE 的核心目标是将深度学习方法与物理领域的传统数值计算方法结合,促进科学计算和工程建模的高效求解。原创 2024-12-20 17:10:03 · 1212 阅读 · 0 评论 -
复现deepxde与NeuralOperators遇到的实验可视化数学问题:在Ubuntu22.04安装Texlive解决 LaTeX 编译错误及安装缺失包的方法总结
通过安装缺少的包、检查命令路径、使用XeLaTeX或LuaLaTeX以及确保代码正确,可以有效解决 LaTeX 编译中的问题。原创 2024-12-20 15:32:26 · 132 阅读 · 0 评论 -
【智能流体力学】RAG大模型方法:解决固体力学和流体动力学问题
【使用 AutoGen + GPT-4o + Chainlit UI 进行工程仿真的对话式多智能体 AI 聊天机器人】本项目构建了一个由多个AI代理组成的系统,这些代理通过使用Microsoft AutoGen进行对话交互,能够自主地创建和仿真固体力学(FEA)和流体动力学(CFD)问题。每个AI代理都擅长规划、问题设定、代码编写、调试、结果分析等任务,能够使用开源Python库进行数值仿真并生成结果。该框架使用OpenAI的GPT-4作为核心驱动力,结合FEniCS、gmsh等工具,极大减少人工干预。原创 2024-11-26 23:54:31 · 387 阅读 · 0 评论 -
MFEM( Modular Finite Element Methods)是一个灵活的、可扩展的、开源的有限元库
MFEM()是一个灵活的、可扩展的、开源的有限元库,主要用于求解偏微分方程(PDE)问题。MFEM的目标是通过模块化设计和强大的抽象能力,简化有限元方法的使用,并支持高效的并行计算,尤其是在复杂的几何形状和自适应网格细化的情况下。原创 2024-10-21 22:48:30 · 393 阅读 · 0 评论 -
深度学习技术在流体力学中的应用与实操培训【1/3理论课程2/3实操课程】
智能流体力学及其仿真技术应用实战。原创 2024-09-24 15:03:58 · 708 阅读 · 0 评论 -
【智能流体力学】数值模拟中的稳态和瞬态
在流体力学和数值模拟中,(Steady State)意味着流体的物理量(如速度、压力、温度等)不随时间变化。换句话说,在稳态模拟中,系统已经达到了平衡,任何位置上的流场特性都不再随时间发生变化。原创 2024-09-13 22:34:37 · 868 阅读 · 0 评论 -
【智能流体力学】神经偏微分方程求解器 前沿论文汇总
关键技术 :Neural-PDE-Solver 是一个基于神经算子(Neural Operators)框架的偏微分方程(PDE)求解器。该项目使用深度学习技术来近似解决 PDE,特别适用于高维和复杂几何形状下的方程求解。与传统方法相比,Neural-PDE-Solver 能够以更少的计算资源和时间成本提供高精度的结果。用户可以通过以下几个步骤来运行 Neural-PDE-Solver:PDE: Partial Differentiable EquationNeural Operators: Learning原创 2024-09-12 00:10:26 · 915 阅读 · 0 评论 -
【智能流体力学】机器学习 (ML) 增强计算流体动力学 (CFD) 的最新进展
这篇综述探讨了通过机器学习 (ML) 增强计算流体动力学 (CFD) 的最新进展。文献系统地分为三个主要类别:数据驱动的代理、物理知情的代理和 ML 辅助数值解。随后,我们重点介绍了 ML for CFD 在关键科学和工程学科中的应用,包括空气动力学、大气科学和生物流体动力学等。论文地址:https://arxiv.org/pdf/2408.12171。原创 2024-09-11 00:21:23 · 853 阅读 · 0 评论 -
Gmsh:一个开源的三维有限元网格生成工具
Gmsh 是一个功能强大、灵活且广泛应用于多个领域的网格生成工具,特别适合 CFD 和 FEA 模型的生成与仿真。通过其直观的界面和强大的脚本功能,用户可以在几何建模、网格生成、后处理和自动化方面实现高效的工作流程。原创 2024-09-08 22:18:23 · 1319 阅读 · 0 评论 -
【智能流体力学】使用ANSYS Fluent + SpaceClaim + SCDM制作流体力学前处理的几何模型
生成来源.scdoc文件来自前处理工具生成的模型数据,或在 FLUENT 中创建和保存的模型。生成方式: 通过前处理工具导出网格数据,或在 FLUENT 中设置并保存模型。作用: 用于储存模型的结构信息和设置,确保在 FLUENT 中的正确导入和使用。.x_t文件是 Parasolid 文件格式的扩展名,用于存储三维模型数据。在 ANSYS Fluent 中,这种格式通常用于在前处理工具之间交换几何数据。要创建.x_t。原创 2024-08-17 13:39:55 · 1732 阅读 · 0 评论 -
【智能流体力学】剖析ANSYS Fluent仿真结果保存与存储文件类型
这些文件类型帮助用户有效地管理ANSYS Fluent仿真项目,确保数据的完整性和可重复性。原创 2024-08-17 10:14:03 · 1756 阅读 · 0 评论 -
【智能流体力学】剖析ANSYS Fluent求解器的选择、求解设定方案和收敛性
对于初学者,建议在FLUENT中使用默认求解设置作为起点,这样可以简化设置过程并获得稳定的仿真结果。随着对仿真技术的深入了解,逐渐学习和掌握更高级的求解设置,并通过实践和验证不断提升求解能力。原创 2024-08-17 10:07:10 · 1360 阅读 · 0 评论 -
【智能流体力学】剖析ANSYS Fluent材料属性设定与边界条件
在ANSYS Fluent中,合理选择和设置外部边界条件对仿真结果的准确性至关重要。通过定义不同类型的边界条件(如压力入口、速度入口、风扇、壁面等),可以模拟各种流体行为和固体交互作用。对于不同的流动问题,选择合适的边界条件不仅可以提高仿真的效率,还能确保结果的真实性。原创 2024-08-17 09:50:33 · 1691 阅读 · 0 评论 -
【智能流体力学】剖析ANSYS Fluent仿真中的物理模型、定义(单元)计算区域条件、流体域和多孔介质
在ANSYS Fluent中,物理模型的选择决定了仿真中求解的方程和结果变量。常见的物理模型包括湍流模型、能量模型、化学反应模型和多相流模型等。正确配置和使用这些模型可以有效地模拟流体中的各种物理现象,并提供准确的仿真结果。在设置物理模型时,需要考虑实际的工程问题和计算资源,以便选择最合适的模型和方法。原创 2024-08-17 09:21:23 · 743 阅读 · 0 评论 -
【智能流体力学】ANSYS Fluent网格和单位
当你从其他软件或CAD系统导入网格文件到ANSYS Fluent时,可能会遇到不同的单位系统问题。此时,必须确保网格的单位和FLUENT的单位系统相匹配,以保证仿真结果的准确性。在使用ANSYS Fluent进行仿真分析时,正确设置网格和单位非常重要。在ANSYS Fluent中,所有的计算默认使用国际单位系统(SI),即长度单位为米(m),质量单位为千克(kg),时间单位为秒(s),温度单位为开尔文(K)等。在进行单位设置和网格缩放时,需要确保所有模型和边界条件的一致性。原创 2024-08-17 09:16:06 · 2572 阅读 · 0 评论 -
【智能流体力学】ANSYS Fluent工作流程设置、求解和后处理详解
允许用户自定义监控报告,用于在求解过程中跟踪特定物理量的变化,如速度、压力、温度等。原创 2024-08-17 09:09:56 · 1123 阅读 · 0 评论 -
【智能流体力学】ANSYS Fluent模型导入、网格划分查看与参数设置
在ANSYS Fluent中导入几何模型并进行网格划分的步骤包括:导入模型文件:将几何模型文件放置在指定路径,打开ANSYS Fluent并设置工作目录,选择Meshing模块进行操作。导入几何模型:通过Meshing模块导入几何模型,加载后显示在工作区中,便于查看和操作。模型切割与尺寸修改:对模型进行必要的切割和尺寸调整,生成初步网格,以便检查模型的计算性和网格质量。封闭流体区域:定义并封闭流体区域,确保所有流体区域完整无缺,避免计算时出现误差。原创 2024-08-17 08:48:36 · 4034 阅读 · 0 评论 -
【智能流体力学】ANSYS Fluent网络类型及其应用方法介绍
网格类型及其选择指南(减少计算,提供效率)在计算流体动力学(CFD)中,选择合适的网格类型对于确保仿真精度和效率至关重要。不同的网格类型在复杂性、生成方式和适用场景上各有优劣。以下是主要网格类型的详细介绍及其选择指南。原创 2024-08-17 07:46:00 · 697 阅读 · 0 评论 -
【智能流体力学】ANSYS Fluent前处理方法及其网格划分选择
CFD 前处理包括明确仿真目标、定义计算区域、创建几何模型、划分网格、设置求解器、求解、检查结果和模型修正等步骤。不同的网格生成工具(如 Workbench Meshing、ICEM CFD 和 Fluent Meshing)各有特点和局限性,选择合适的工具和方法可以有效提高仿真精度和效率。二次开发技术(如脚本、自定义插件和自动化工作流)能够进一步扩展和优化 CFD 软件的功能,但需要考虑工具的限制和复杂性。原创 2024-08-15 00:19:17 · 1284 阅读 · 0 评论 -
【智能流体力学】ANSYS Fluent计算流体力学原理、仿真过程分析方法介绍
计算流体动力学(CFD)是研究流体流动、传质、传热、化学反应及相关现象的一门科学。它通过对质量守恒、动量守恒和能量守恒等基本方程的计算,来预测和分析这些现象。CFD能够为工程师和科学家提供流体流动行为的详细信息,从而帮助在设计和优化过程中做出更科学的决策。CFD的基本原理质量守恒(Continuity Equation)确保在控制体积内的质量保持不变。质量守恒方程描述了流体在流动过程中质量的传递和保留情况。动量守恒(Momentum Equation)计算流体中每个点的力和运动。原创 2024-08-14 23:41:11 · 1486 阅读 · 0 评论 -
【智能流体力学】ANSYS Fluent流体仿真学习流程和Fluent模型方法概述
ANSYS Fluent 是一款广泛使用的计算流体力学(CFD)软件,适用于模拟流体流动、传热、化学反应等复杂物理现象。Fluent 提供了多种物理模型,用于模拟不同类型的流动情况。原创 2024-08-14 22:40:52 · 2269 阅读 · 0 评论 -
【智能流体力学】ANSYS Fluent流体仿真基础、深度学习驱动思想及其CAX计算机辅助集成技术
是Fluent中的一个功能模块,用于可视化和分析流体中各种组分的浓度。这个模型特别适合用于化学反应工程、环境工程以及涉及多组分流体的模拟。原创 2024-08-14 17:55:28 · 1306 阅读 · 0 评论 -
【深度学习驱动流体力学】机器学习应用到非线性动力学领域、车辆碰撞方面
在实际应用中,你可以用真实的碰撞数据训练更复杂的模型,比如卷积神经网络(CNN)处理图像数据,或者使用序列模型(如LSTM)处理时间序列数据。为了展示如何使用机器学习在车辆碰撞分析中的应用,下面是一个基于Python的简单示例代码,利用神经网络来预测车辆碰撞中的受损程度。例如,某些项目中,研究人员使用深度学习模型来分析碰撞数据,从而改进车身结构的设计以提高安全性。综上所述,机器学习在非线性动力学领域,尤其是车辆碰撞分析方面具有很大的潜力,可以用来提升建模精度、提高预测能力、优化设计以及加速仿真计算。原创 2024-08-13 11:43:28 · 735 阅读 · 0 评论 -
Physics-Informed Neural Networks (PINNs)用于流体力学:输入到输出过程分析
在Physics-Informed Neural Networks (PINNs)用于流体力学问题的应用中,模型的输入和输出通过求解与物理问题相关的方程来进行过渡。原创 2024-08-08 14:21:23 · 1160 阅读 · 0 评论 -
【深度学习驱动流体力学】湍流仿真到深度学习湍流预测
在数值模拟中,如使用OpenFOAM等CFD软件,基于Navier-Stokes方程组和适当的湍流模型,可以模拟出湍流的速度场、压力分布、湍流能量等物理量的时空演变。相比传统的基于物理模型的湍流预测方法,深度学习在某些情况下可能具有更高的灵活性和适应性,特别是在处理复杂湍流结构或数据不完整的情况下。例如,湍流仿真可以提供高精度的湍流结构和详细的流场信息,作为深度学习模型的训练数据。通过修改这些文件,用户可以定制化地运行OpenFOAM中的湍流模拟,从而研究和分析不同流动情况下的湍流行为和效应。原创 2024-06-23 13:49:00 · 654 阅读 · 0 评论 -
【深度学习驱动流体力学】pisoFoam求解器与湍流
pisoFoam是基于有限体积法的求解器,专门用于求解压力隐式分裂算法(Pressure Implicit with Splitting of Operators, PISO)格式的可压缩流体动力学问题。它广泛应用于工业和学术界,适用于各种流动情况,包括湍流流动和非湍流流动。可压缩流体和不可压缩流体是流体力学中两种基本的流体模型,它们在描述流体运动时有着重要的区别和应用。原创 2024-06-23 02:59:45 · 447 阅读 · 0 评论 -
【深度学习驱动流体力学】采集OpenFOAM仿真的流体力学数据送入到强化学习DQN模型训练
在训练过程中,使用经验回放技术存储过去的经验(状态、动作、奖励、下一状态、是否终止),并从中随机采样小批量数据进行训练。通过Matplotlib库绘制训练过程中的奖励和损失曲线,提供了直观的反馈,帮助识别潜在的问题或调整超参数。通过这些步骤,实现了使用DQN技术对流体力学问题的训练和预测,展示了强化学习在处理复杂物理系统中的潜力。其他链接:https://blog.csdn.net/weixin_41194129/article/details/139825217。方法重置模拟到初始状态,而。原创 2024-06-20 15:08:02 · 605 阅读 · 0 评论 -
【深度学习驱动流体力学】采集OpenFOAM仿真的流体力学数据送入到LSTM模型训练
数据处理与预处理该代码首先导入必要的库,包括用于读取和处理VTK文件的pyvista,用于数值计算的numpy,用于路径操作的os,用于数据集划分的sklearn,用于构建和训练神经网络的tensorflow,以及用于可视化的matplotlib。然后,定义数据目录并生成要读取的VTK文件路径列表。通过read_vtk函数读取VTK文件并提取速度场数据,并将所有数据存储在一个numpy数组中。原创 2024-06-20 10:38:03 · 473 阅读 · 0 评论 -
【深度学习驱动流体力学】采集OpenFOAM仿真数据作为AI模型训练数据集与卷积神经网络搭建到预测(一站式完整代码实现)
采集OpenFOAM仿真数据作为AI模型训练数据集与卷积神经网络搭建到预测(一站式完整代码实现)原创 2024-06-20 09:45:12 · 934 阅读 · 0 评论 -
【深度学习驱动流体力学】计算流体力学算例剖析与实现
通过细化网格、增加初始速度、设置合理的边界条件和时间步长,可以在OpenFOAM中更清晰地模拟和观察水流的行为。这些设置可以帮助你在cavity案例中更明显地看到水流特征。原创 2024-06-20 01:20:44 · 621 阅读 · 0 评论 -
【深度学习驱动流体力学】OpenFOAM目录流体力学求解器汇总介绍
下面这些目录结构和其中的求解器和工具展示了OpenFOAM作为一个功能强大且广泛应用的开源CFD软件框架的多样性和灵活性。每个求解器都专门用于解决不同类型的流体动力学问题,从基础的流动模拟到复杂的多相流动和燃烧模拟等各种应用场景。原创 2024-06-19 21:06:31 · 742 阅读 · 0 评论 -
【深度学习驱动流体力学】OpenFOAM 编译完成Bin目录命令计算流体力学详解
OpenFOAM 译完成 Bin 目录下包含了多个关键命令和工具,用于管理、运行和优化仿真过程中的各个环节。这些命令涵盖了从创建新案例、运行仿真到分析结果的全过程,包括处理网格、设置物理条件、运行求解器和后处理数据等多个方面。每个命令和工具都有其特定的功能和操作方法,用户可以根据实际需求选择和使用,以支持多种流体动力学问题的建模和求解。下面给出一个案例介绍:buoyantPimpleFoam 求解器已被更通用的 buoyantFoam 求解器替代了。原创 2024-06-19 20:43:48 · 453 阅读 · 0 评论 -
【深度学习驱动流体力学】计算流体力学openfoam-paraview与python3交互
ParaView 提供了强大的 Python 接口,允许用户通过 Python 脚本来控制和操作其可视化功能。在 ParaView 中,可以通过 View > Python Shell 菜单打开 Python Shell 窗口,用于执行 Python 代码。要确保正确配置 Python 环境,可以在 Python Shell 中使用 import sys;print(sys.executable) 查看当前 Python 解释器路径,并确保其与所需环境一致。原创 2024-06-19 20:09:32 · 1176 阅读 · 0 评论