使用机器学习算法轻松预测汽车碰撞模型,高效通过安全测试检验

在当今快速发展的技术领域,人工智能(AI)、机器学习和深度学习等技术已经成为推动工业变革和设计创新的关键力量。

人工智能 (AI) 和机器学习 (ML) 领域的发展,加上强大的仿真、测试和数据集的可用性增加,使工程数据科学成为现代产品开发生命周期的关键组成部分。AI 增强的计算机辅助工程 (CAE) 使制造商能够挖掘机器学习产生的价值,通过物理和AI 驱动的工作流程探索复杂设计问题的新解决方案,并通过协作和设计融合实现更多的产品创新。

大家都知道汽车在上市以前需要做各种各样的安全测试,而行人碰撞测试是分为三个部分的,分别是头部碰撞测试、大腿碰撞测试和小腿碰撞测试。

首先我们用模拟仿真软件将汽车形状的三维模型构建出来,同时使用一个半球形的物体在车引擎盖不同的区域进行碰撞,然后通过模拟仿真软件计算伤害值,如果有些区域的伤害值过高,就需要优化车引擎盖的设计,比如发动机舱的布局以及整个区域的调整。

那机器学习为我们带来了什么呢?通过机器学习可以收集到主机厂商或者汽车厂商过往的测试数据,包括车型设计数据,比如引擎盖的宽度长度、材料参数以及发动机舱内部的一些数据。通过仿真平台构建一个模型,当有新的车型需求,我们首先将这个车型参数化,然后放到模型里,直接使用机器学习就可以进行快速预测。

机器学习的预测过程跟传统的模拟仿真相比,可以实现几百倍甚至上千倍的时间缩减。基于机器学习计算出来的指标,直接优化设计,直到所有的设计满足要求以后,可以再用模拟仿真做一次验证,这样会大幅减少实验或者模拟仿真的时间。

我们通过一个简短的视频为大家做一个演示,一起看看如何通过可视化的简单拖拽方式快速构建机器学习的模型,可以自由进行参数的选择,指定要预测的数据以及所用的机器学习算法,比如AI中常用的预测算法XG Boost。

行人保护-头部损伤指数HIC(Head Injury Criterion)预测

最后会出来一个预测值,以及RMSE和标准误差。大家可以看到模型预测出来的结果和原始数据的HIC值是相当吻合的。所以机器学习模型可以一定程度上替代模拟仿真的部分工作。


关于 Altair 澳汰尔

Altair(纳斯达克股票代码:ALTR)是计算智能领域的全球领导者之一,在仿真、高性能计算 (HPC) 和人工智能等领域提供软件和云解决方案。Altair 能使跨越广泛行业的企业们在连接的世界中更高效地竞争,并创造更可持续的未来。

公司总部位于美国密歇根州,服务于 16000 多家全球企业,应用行业包括汽车、消费电子、航空航天、能源、机车车辆、造船、国防军工、金融、零售等。

欲了解更多信息,欢迎关注公众号:Altair 澳汰尔

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值