原文作者:Livio Mariano
全球仿真数据与数字孪生系统开发总监
1、产品迭代
产品在不断迭代,产品开发周期也在不断变化,这在很大程度上受到海量数据的影响。如今,数据不仅用于验证虚拟模型,如系统设计中使用的数字孪生模型,而且在运营过程中也发挥着至关重要的作用。与过去不同,公司一旦产品发布便无法得知其状况,现在却能够持续与产品保持连接。
2、海量的数据
事实上,现代产品具有传输数据的能力,这些数据用于评估产品状态、监控性能、检测异常、识别潜在的意外工作条件和情景等。数据、数据、数据无处不在!
这些数据通常由一个“大脑”处理,也就是所谓的“运营”数字孪生,它们揭示出关键的洞察。听起来很简单,对吧?部署数字孪生以精准地挖掘出最佳的可执行洞察,拥有合适的技术就能实现。
无论是来自仿真还是传感器,今天的挑战不在于数据的可用性,而在于其高效且有效的利用。数据常常杂乱的、不完整的、形式各异的、带有杂质,甚至是无关的数据。在实践中,只有经过彻底清洗过程后,一小部分可用数据才具备被“大脑”处理的资格。
3、“黄金”的生命周期
为了直观地解释典型场景中的数据流,我喜欢用“黄金”生命周期作类比。
<