hdu-2256-共轭数+矩阵快速幂

首先我们可以自然地发现原式(\sqrt{2}+\sqrt{3})^{2n}=(5+2\sqrt{6})^{n}

然后联想到共轭数的性质想到(5+2\sqrt{6})^{n}=A_{n}+B_{n}*\sqrt{6},并且(5-2\sqrt{6})^{n}=A_{n}-B_{n}*\sqrt{6}

那么(5+2\sqrt{6})^{n}+(5-2\sqrt{6})^{n}=2A_{n},也就是说(5+2\sqrt{6})^{n}=2A_{n}-(5-2\sqrt{6})^{n}

因为0<(5-2\sqrt{6})^{n}<1,这样把上式取整得(5+2\sqrt{6})^{n}=2A_{n}-1

A_{n}是整数部分,B_{n}是非整数部分的系数,再说下共轭数的性质还有一个(5+2\sqrt{6})^{n}*(5-2\sqrt{6})^{n}=1

那么再去想如何求A_{n}

我们可以设F(n)=(5+2\sqrt{6})^{n}=A_{n}+B_{n}*\sqrt{6}

那么F(n-1)=(5+2\sqrt{6})^{n-1}=A_{n-1}+B_{n-1}*\sqrt{6}

由此得F(n)=F(n-1)*(5+2\sqrt{6})=(A_{n-1}+B_{n-1}*\sqrt{6})*(5+2\sqrt{6})

最终得到递推式F(n)=(5A_{n-1}+12B_{n-1})+(2A_{n-1}+5B_{n-1})*\sqrt{6}

也就是A_{n}=5A_{n-1}+12B_{n-1}      B_{n}=2A_{n-1}+5B_{n-1}

构造矩阵得\begin{pmatrix} 5 & 12\\ 2& 5 \end{pmatrix}*\binom{A_{n-1}}{B_{n-1}}=\binom{A_{n}}{B_{n}},且A_{1}=5B_{1}=2

#include <iostream>
#include <cstdio>
#include <cstring>

using namespace std;

typedef long long int ll;
const ll mod=1024;
int t;
ll n;
ll s[2][2];

void mult(ll a[][2],ll b[][2])
{
    ll c[2][2]= {0,0,0,0};
    for(int k=0; k<2; k++)
        for(int i=0; i<2; i++)
            for(int j=0; j<2; j++)
                c[i][j]=(c[i][j]+a[i][k]*b[k][j]%mod)%mod;
    memcpy(a,c,sizeof(c));
}

void quick(ll x)
{
    ll T[2][2]= {5,12,2,5};
    while(x)
    {
        if(x%2) mult(s,T);
        mult(T,T);
        x/=2;
    }
}

int main()
{
    scanf("%d",&t);
    while(t--)
    {
        scanf("%lld",&n);
        s[0][0]=s[1][1]=1;
        s[0][1]=s[1][0]=0;
        quick(n-1);
        ll A=(s[0][0]*5%mod+s[0][1]*2%mod)%mod;
        printf("%lld\n",(A*2-1)%mod);
    }
    return 0;
}

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值