Tucker 分解

张量分解-Tucker分解 2016.06.19

Tucker分解

Tucker的1966年文章中第一次提到了Tucker分解。一个三阶张量的Tucker分解的图示如下图所示。

三阶张量的Tucker分解

对于一个三阶张量 I×J×K XRIJK, 由Tucker分解可以得到 AI×P ARIP, BJ×Q BRJQ, CK×R CRKR三个因子矩阵和一个核张量  P×Q×R GRPQR,每个mode上的因子矩阵称为张量在每个mode上的基矩阵或者是主成分,因此Tucker 分解又称为高阶PCA, 高阶SVD等。从图中可以看出,CP分解是Tucker分解的一种特殊形式:如果核张量的各个维数相同并且是对角的,则Tucker分解就退化成了CP分解。

在三阶张量形式中,有

=×1A×2B×3C=p=1Pq=1Qr=1Rgpqrapbqcr=[[;A,B,C]] XG1A2B3Cp1Pq1Qr1RgpqrapbqcrGABC
将上面的公式写成矩阵的形式即:
X1=AG(1)(CB)TX2=BG(2)(CA)TX3=CG(3)(BA)T X1AG1CBTX2BG2CATX3CG3BAT
对于三阶张量固定一个因子矩阵为单位阵,就得到Tucker分解一个重要的特例:Tucker2。例如固定 C=I CI,则退化为:
=×1A×2B=[[;A,B,I]] XG1A2BGABI
进一步,如果固定两个因子矩阵,就得到了Tucker1例如固定 C=I CI, B=I BI,则Tucker 分解就退化成了普通的PCA
=×1A=[[;A,I,I]] XG1AGAII
把上面的公式推广到 N N阶的模型即可得到:
=×1A(1)×2A(2)×(N)A(N)=[[;A(1),A(2),,A(N)]] XG1A12A2NANGA1A2AN
写成矩阵形式即:
X(n)=A(n)G(n)(A(N)A(n+1)A(n1)A(1))T XnAnGnANAn1An1A1T

n-秩与低秩近似

n n-秩又称为多线性秩。一个N阶张量 X的n-mode秩定义为:

rankn()=rank(X(n)) ranknXrankXn
rankn()=Rn,n=1,,N ranknXRnn1N X叫做秩 (R1,R2,,Rn) R1R2Rn的张量。 Rn Rn可以看作是张量 X在各个mode上fiber所构成的空间的维度。如果 rankn()=Rn,n=1,,N ranknXRnn1N,则很容易得到 X的一个精确秩- (R1,R2,,RN) R1R2RNTucker分解;然而如果至少有一个  n n 使得  rankn()>Rn ranknXRn,则通过Tucker分解得到的就是 X的一个秩-  (R1,R2,,RN) R1R2RN近似。下图展示了一个三阶张量的低秩近似,这个在图像处理中有可以认为是干净的图像。 三阶张量的低秩近似

Tucker分解的求解

对于固定的 n n-秩,Tucker分解的唯一性不能保证,一般加上一些约束,如分解得到的因子单位正交约束等。比如HOSVD(High Order SVD)求解算法,它通过张量的每一个mode上做SVD分解对各个mode上的因子矩阵进行求解,最后计算张量在各个mode上的投影之后的张量作为核张量。它的算法过程如下图所示。HOSVD

虽然利用SVD对每个mode做一次Tucker1分解,但是HOSVD 不能保证得到一个较好的近似,但HOSVD的结果可以作为一个其他迭代算法(如HOOI)的很好的初始化。(\textit{High-order orthogonal iteration})HOOI算法,将张量分解看作是一个优化的过程,不断迭代得到分解结果。假设有一个 N N 阶张量 I1×I2××IN XRI1I2IN,那么对 X进行分解就是对下面的问题进行求解:

 [[;A(1),,A(N)]] =vec()(A(N)A(1))vec()   XGA1AN vecXANA1vecG 
将上述的目标函数进一步化简得到:

 [[;A(1),,A(N)]]2 =22,[[;A(1),,A(N)]]+[[;A(1),,A(N)]]2 =22×1A(1)T×NA(N)T,+2 =|22,+2   XGA1AN2 X22XGA1ANGA1AN2 X22X1A1TNANTGG2 X22GGG2 
G满足
=×1A(1)T×NA(N)T GX1A1TNANT
从而可与可以得到:
=2×1A(1)T×NA(N)T2 X2X1A1TNANT2
由于 X是一个常数,最小化上面的式子相当于最大化:
max×1A(1)T×NA(N)TsubjecttoA(n)??×?andcolumnwiseorthogonal X1A1TNANTsubjecttoAnInRnandcolumnwiseorthogonal
写成矩阵形式即:
maxA(n)TW s.tW=X(n)(A(N)A(n+1)A(n1)A(1)) AnTW s.t. WXnANAn1An1A1
这个问题可以通过令 A(n) An 为  W W 的前  Rn Rn 个左奇异值向量来进行求解。HOOI算法的过程如下图所示。 HOOI algorithm

约束Tucker的分解

除了可以在Tucker分解的各个因子矩阵上加上正交约束以外,还可以加一些其它约束,比如稀疏约束,平滑约束,非负约束等。另外在一些应用的场景中不同的mode的物理意义不同,可以加上不同的约束。在下图中在三个不同的mode上分别加上了正交约束,非负约束以及统计独立性约束等。HOOI algorithm

Tucker的分解的应用

前面我们说Tucker分解可以看作是一个PCA的多线性版本,因此可以用于数据降维,特征提取,张量子空间学习等。比如说一个低秩的张量近似可以做一些去噪的操作等。Tucker分解同时在高光谱图像中也有所应用,如用低秩Tucker分解做高光谱图像的去噪,用张量子空间做高光谱图像的特征选择,用Tucker分解做数据的压缩等。下面以高光谱图像去噪为例作相关的介绍。 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6909773中对高光谱图像去噪的流程如下图所示,HOOI algorithm它首先对高光谱图像进行分块,然后对分的快进行聚类,得到一些group,最后对各个group里面的数据进行低秩Tucker分解。处理之前的噪声图像和处理之后的图像的对比如下图所示,可以发现Tucker分解可以对高光谱数据做有效的去噪处理。有噪声图像处理之后的图像

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值