Self-supervised and unsupervised learning for video

本文介绍了多种自我监督和无监督学习在视频处理中的应用,如ActBERT通过视频与文字的对应关系学习表示,STCR使用时空一致性正则化进行动作识别,Temporal Cycle-Consistency Learning通过循环一致性学习视频匹配,以及利用无监督方法从视频中学习视觉特征和视频对象分割。这些方法展示了在无标注数据下如何有效学习视频理解的表示。
摘要由CSDN通过智能技术生成

目录

 

ActBERT: Learning Global-Local Video-Text Representations(cvpr2020)

Self-supervised learning using consistency regularization of spatio-temporal data augmentation for action recognition(STCR)

Temporal Cycle-Consistency Learning(Google Brain)

Unsupervised leaning of visual representation using videos

Learning Video Object Segmentation from Unlabeled Videos

Self-Supervised Video Representation Learning with Space-Time Cubic Puzzles

Other methods


ActBERT: Learning Global-Local Video-Text Representations(cvpr2020)

背景:

  1. 在教做菜的视频中,视频创作者会描述,“开始切胡萝卜”,往往人物也是在正进行“切胡萝卜”的动作。这种天然的视觉对应关系,是进行视频文字自监督学习的重要要素。其中文字描述可以通过自动语音识别技术(ASR)从视频中或从创作者上传的字幕中提取文字。这样成对的视频文字数据就产生了。 
  2. 为了解决视觉特征无法做分类预测的问题,VideoBERT 使用了 hierachical k-means 的方法将视觉特征进行离散化,这样每个数据特征都对应一个离散的视觉中心。

idea:在输入层同时加入全局动作特征与局部区域特征。

论文链接:https://openaccess.thecvf.com/content_CVPR_2020/papers/Zhu_ActBERT_Learning_Global-Local_Video-Text_Representations_CVPR_2020_paper.pdf

参考:https://www.jiqizhixin.com/articles/2020-07-20-8

 

Self-supervised learning using consistency regularization of spatio-temporal data augmentation for action recognition(STCR)

分为两个Branch, 一路Clean表示普通的Video,另一路表示引入Noise之后的, 2路不同的输入经过3D Backbone之后,我们希望feature 在 temporal-level和feature-level

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值