- 博客(15)
- 资源 (6)
- 收藏
- 关注
原创 集成(模型)融合方法总结
本文为本人另两篇博客机器学习/计算机视觉(cv)实习面试资料整理(附字节、阿里、腾讯、美团面经)、机器学习知识点整理以及集成树知识点概括下的子内容,有需要的朋友按需自取~另:本文只是知识点的整理概括,更为详细的可以参考我每个部分给出的链接~目录分类线性加权融合法交叉融合法(blending)瀑布融合法特征融合法预测融合法分类器 Boosting 思想分类器 Bagging 思想Stacking详细介绍参考模型的几种常见融合方法和【机器学习】模型融合方法概述分类集成树知识点概括线性加权融合法;
2021-05-07 21:01:37 1274 1
原创 LightGBM算法概述
本文为本人另两篇博客机器学习/计算机视觉(cv)实习面试资料整理(附字节、阿里、腾讯、美团面经)、机器学习知识点整理以及集成树知识点概括下的子内容,有需要的朋友按需自取~另:本文只是知识点的整理概括,更为详细的可以参考我每个部分给出的链接~目录概述LightGBM 优化直方图带深度限制的 Leaf-wise 的叶子生长策略直方图加速直接支持类别特征LightGBM并行优化LightGBM和XGBoost区别详细介绍参考LightGBM算法总结概述LightGBM(Light Gradient B
2021-05-07 20:47:39 1589 1
原创 XGBoost算法概述
本文为本人另两篇博客机器学习/计算机视觉(cv)实习面试资料整理(附字节、阿里、腾讯、美团面经)、机器学习知识点整理以及集成树知识点概括下的子内容,有需要的朋友按需自取~另:本文只是知识点的整理概括,更为详细的可以参考我每个部分给出的链接~目录概述原理预排序算法的优缺点缺失值的处理离散值的处理重要参数树停止生长条件剪枝并行化防止过拟合正则项用于特征选择时,如何评价特征重要性选择最佳分裂点XGBoost和GBDT的不同点详细介绍参考深入理解XGBoost、XGBoost 重要参数(调参使用)和[校招-基
2021-05-07 20:26:39 796
原创 GBDT(梯度提升树)算法概述
本文为本人另两篇博客机器学习/计算机视觉(cv)实习面试资料整理(附字节、阿里、腾讯、美团面经)、机器学习知识点整理以及集成树知识点概括下的子内容,有需要的朋友按需自取~另:本文只是知识点的整理概括,更为详细的可以参考我每个部分给出的链接~目录概述算法步骤正则化优缺点优点缺点GBDT和[AdaBoost](https://blog.csdn.net/qq_39362284/article/details/116276266)区别GBDT和RF区别相同点不同点详细介绍参考【机器学习算法总结】GBDT机器
2021-04-29 21:05:10 1560
原创 AdaBoost算法概述
本文为本人另两篇博客机器学习/计算机视觉(cv)实习面试资料整理(附字节、阿里、腾讯、美团面经)、机器学习知识点整理以及集成树知识点概括下的子内容,有需要的朋友按需自取~另:本文只是知识点的整理概括,更为详细的可以参考我每个部分给出的链接~目录基本原理损失函数二级目录三级目录详细介绍参考Adaboost入门教程——最通俗易懂的原理介绍(图文实例)和集成学习之Adaboost算法原理小结基本原理Adaboost算法基本原理就是将多个弱分类器(弱分类器一般选用单层决策树)进行合理的结合,使其成为一个
2021-04-29 20:37:24 2095
原创 集成树知识点概括
本文为本人另两篇博客机器学习/计算机视觉(cv)实习面试资料整理(附字节、阿里、腾讯、美团面经)以及机器学习知识点整理下的子内容,有需要的朋友按需自取~另:本文只是知识点的整理概括,更为详细的可以参考我每个部分给出的链接~目录集成学习分类决策树随机森林AdaBoostGBDTXGBoostLightGBM集成融合方法集成学习详细介绍参考机器学习算法之Boosting。集成学习是通过训练弱干个弱学习器,并通过一定的结合策略,从而形成一个强学习器。有时也被称为多分类器系统(multi-classifi
2021-04-29 20:09:03 526
原创 决策树、随机森林知识点概括
本文为本人另两篇博客机器学习/计算机视觉(cv)实习面试资料整理(附字节、阿里、腾讯、美团面经)以及机器学习知识点整理下的子内容,有需要的朋友按需自取~另:本文只是知识点的整理概括,更为详细的可以参考我每个部分给出的链接~目录决策树总结概述决策树的三种构建ID3算法C4.5算法CART树步骤分类树回归树信息增益 vs 信息增益比Gini 指数 vs 熵剪枝缺失值的处理抛弃缺失值补充缺失值概率化缺失值补充决策树算法特点优点缺点随机森林概述随机采样BootstrapBagging的生成方法Bag关系决策树
2021-04-29 20:06:10 1459
原创 EM/HMM算法概括
本文为本人另两篇博客机器学习/计算机视觉(cv)实习面试资料整理(附字节、阿里、腾讯、美团面经)以及机器学习知识点整理下的子内容,有需要的朋友按需自取~另:本文只是知识点的整理概括,更为详细的可以参考我每个部分给出的链接~本文参考链接:EM算法详解和HMM算法详解(内含推导)这两篇讲的比较详细,我的博客只是对它的一个总结概括,大家想更详细了解的可以看这两篇文章目录摘要EM概述算法步骤总结HMMHMM结构解决的三个问题HMM两大假设摘要EM(Expectation-Maximum)算法也称期望最大
2021-04-22 13:37:07 839
原创 贝叶斯分类
本文为本人另两篇博客机器学习/计算机视觉(cv)实习面试资料整理(附字节、阿里、腾讯、美团面经)以及机器学习知识点整理下的子内容,有需要的朋友按需自取~另:本文只是知识点的整理概括,更为详细的可以参考我每个部分给出的链接~本文参考链接:带你理解朴素贝叶斯分类算法这篇讲的比较详细,我的博客只是对它的一个总结概括,大家想更详细了解的可以看这篇文章目录概述贝叶斯分类贝叶斯公式朴素贝叶斯:举例优缺点优点缺点朴素半贝叶斯:概述贝叶斯分类从数学角度来说,分类问题可做如下定义:已知集合 C=y1,y2,..
2021-04-22 13:16:36 315
原创 线性回归/逻辑回归/SVM
本文为本人另两篇博客机器学习/计算机视觉(cv)实习面试资料整理(附字节、阿里、腾讯、美团面经)以及机器学习知识点整理下的子内容,有需要的朋友按需自取~另:本文只是知识点的整理概括,更为详细的可以参考我每个部分给出的链接~目录极大似然估计最小二乘法线性回归概念公式逻辑回归概述优点代价函数总结线性回归和LR对比SVM概述参数核函数常用核函数类型核函数选择多分类lr svm对比相同点不同点极大似然估计极大似然估计,通俗理解来说,就是利用已知的样本结果信息,反推最具有可能(最大概率)导致这些样本结果出现
2021-04-21 21:45:41 1409
原创 机器学习知识点整理
本文为本人另一篇博客机器学习/计算机视觉(cv)实习面试资料整理(附字节、阿里、腾讯、美团面经)下的子内容,有需要的朋友按需自取~本文大纲参考周志华《机器学习》(西瓜书)线性回归/逻辑回归/SVM贝叶斯分类EM集成树集成决策树随机森林AdaBoostGBDTXGBoostLightGBM集成融合方法神经网络聚类降维特征选择与稀疏学习HMM...
2021-04-21 20:59:56 199
原创 机器学习/计算机视觉(cv)实习面试资料整理(附字节、阿里、腾讯、美团面经)
从3.18日第一次投递简历,到4月初拿到字节阿里offer。事实证明,千万不要等到自己“准备好了”再去投递,一次面试可以极大的加快你的复习进度,也可以及时查漏补缺。
2021-04-21 20:45:52 1736 1
原创 《Self-supervised Video Representation Learning Using Inter-intra Contrastive Framework》论文阅读笔记
《Self-supervised Video Representation Learning Using Inter-intra Contrastive Framework》论文阅读笔记论文地址:https://arxiv.org/pdf/2008.02531.pdf代码地址:https://github.com/BestJuly/IIC目录引言一、文章解析1.1 backbone1.2 inputs1.3 contrastive learning1.4 joint representation1.5
2020-12-29 22:30:32 996 2
原创 《Listen to look:Action recognition by previewing audio》论文阅读笔记
《Listen to look:Action recognition by previewing audio》论文阅读笔记引言视频冗余IMGAUD2VID 师生蒸馏框架current approachesauthorIMGAUD-SKIMMING attention-based LSTM网络LSTMQueryscore预测总结论文地址:https://arxiv.org/abs/1912.04487代码地址:https://github.com/facebookresearch/Listen-to-Lo
2020-12-29 12:58:04 494
原创 《Flow Guided Recurrent Neural Encoder for Video Salient Object Detection》学习笔记
这里写自定义目录标题欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导入欢迎使用Ma...
2019-07-18 14:47:05 286
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人