解决问题:
- Learning visual features from unlabeled image data
- a new approach in which the number of configurations can be arbitrarily large while the number of parameters remains
unchanged.
相关工作:
- 聚类;
- all images can be represented in a low-level space and trained encoders and/or decoders to recover the image and/or representation
Problem and Baseline Solution:
- an image is partitioned into a grid (e.g., 3*3) of patches and then disordered, and the task is to recover the original configuration.
- the network needs to understand what a patch contains as well as how two or more patches are related to each other
- we expect this task to teach a network both intra-patch and inter-patch information
Strategy
- 相对于9!的排列方式,作者提出新的算法
- u