【论文笔记】【CVPR2020】 (MoCo) Momentum Contrast for Unsupervised Visual Representation Learning

该博客介绍了MoCo(Momentum Contrast)方法,这是一种用于无监督学习的对比学习框架。MoCo通过使用一个大型的动态字典和动量更新的编码器,解决了对比学习中的关键问题,即保持特征一致性并扩大负样本库。实验表明,MoCo在ImageNet上的线性分类协议下表现出色,并且在多个下游任务中达到甚至超过有监督预训练的效果,填补了无监督和有监督预训练之间的差距。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, Ross Girshick
CVPR2020 Best Paper
Code: https://github.com/facebookresearch/moco

0 Contrast Learning

0.1 Pretext Task

正样本之间拉近,负样本推远

对比学习的优势在于非常灵活,只要能用合适的方法找到正样本和负样本就可以

Instance Discrimination

一张图像 X i X_i Xi经过两种不同变换得到的图像( X i 1 {X_i}^1 Xi1称为anchor和 X i 2 {X_i}^2 Xi2称为positive),其他图像 X j X_j Xj

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值