[python]基于hanlp的机构识别提取

该博客介绍了如何使用Python结合HanLP库进行机构识别。首先展示了HanLP的分词和词性标注功能,解释了词性标注的含义。接着,重点挑选了与机构识别相关的词性代号,并提供了实验数据——知乎回答文本。最后,展示了实验的识别效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

HanLP官网icon-default.png?t=M4ADhttps://www.hanlp.com/

目录

示例及相关概念

实验数据

机构识别


示例及相关概念

在正式开始处理前,可以先看看hanlp的示例效果

from pyhanlp import *
sample='又是快乐(悲伤)写(ctrlcv)代码的一天呢!'
seg = HanLP.segment(sample)
print(seg)
结果显示:
[又是/c, 快乐/a, (/w, 悲伤/a, )/w, 写/v, (/w, ctrlcv/nx, )/w, 代码/n, 的/ude1, 一/m, 天/qt, 呢/y, !/w]

可以看到,经过分词后,会生成一个列表,其中每个元素都由词及标注词性构成

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值