Given an integer array with all positive numbers and no duplicates, find the number of possible combinations that add up to a positive integer target.
Example:
nums = [1, 2, 3] target = 4 The possible combination ways are: (1, 1, 1, 1) (1, 1, 2) (1, 2, 1) (1, 3) (2, 1, 1) (2, 2) (3, 1) Note that different sequences are counted as different combinations. Therefore the output is 7.
Follow up:
What if negative numbers are allowed in the given array?
How does it change the problem?
What limitation we need to add to the question to allow negative numbers?
My code:
DP bottom-up
public class Solution {
public int combinationSum4(int[] nums, int target) {
int n=nums.length;
if (n<=0) return 0;
int result[] = new int[target+1];
for(int i=0;i<target+1;i++){
for(int j=0;j<n;j++){
if (i-nums[j]==0){
result[i]+=1;
}
else if (i-nums[j]>0){
result[i]+=result[i-nums[j]];
}
}
}
return result[target];
}
}
DP bottom-up
public class Solution {
public int combinationSum4(int[] nums, int target) {
int n=nums.length;
if (n<=0) return 0;
int result[] = new int[target+1];
result[0]=1;
for(int i=1;i<target+1;i++){
for(int j=0;j<n;j++){
if (i-nums[j]>=0){
result[i]+=result[i-nums[j]];
}
}
}
return result[target];
}
}
评注:把result[0]赋值为1, 这样每次就不用做i-nums[j]==0的判断了。
DP up-bottom
private int[] dp;
public int combinationSum4(int[] nums, int target) {
dp = new int[target + 1];
Arrays.fill(dp, -1);
dp[0] = 1;
return helper(nums, target);
}
private int helper(int[] nums, int target) {
if (dp[target] != -1) {
return dp[target];
}
int res = 0;
for (int i = 0; i < nums.length; i++) {
if (target >= nums[i]) {
res += helper(nums, target - nums[i]);
}
}
dp[target] = res;
return res;
}
Recursive
public int combinationSum4(int[] nums, int target) {
if (target == 0) {
return 1;
}
int res = 0;
for (int i = 0; i < nums.length; i++) {
if (target >= nums[i]) {
res += combinationSum4(nums, target - nums[i]);
}
}
return res;
}
不可取,还是要用动态规划。
总结:You are the best.
如果有负数的话,相当于把整个数组向左平移一个数组的最小值。