377. Combination Sum IV**

Given an integer array with all positive numbers and no duplicates, find the number of possible combinations that add up to a positive integer target.

Example:

nums = [1, 2, 3]
target = 4

The possible combination ways are:
(1, 1, 1, 1)
(1, 1, 2)
(1, 2, 1)
(1, 3)
(2, 1, 1)
(2, 2)
(3, 1)

Note that different sequences are counted as different combinations.

Therefore the output is 7.

Follow up:
What if negative numbers are allowed in the given array?
How does it change the problem?
What limitation we need to add to the question to allow negative numbers?

My code:

DP bottom-up

public class Solution {
    public int combinationSum4(int[] nums, int target) {
        int n=nums.length;
        if (n<=0) return 0;
        int result[] = new int[target+1];
        for(int i=0;i<target+1;i++){
            for(int j=0;j<n;j++){
                if (i-nums[j]==0){
                    result[i]+=1;
                }
                else if (i-nums[j]>0){
                    result[i]+=result[i-nums[j]];
                    }
                }
        }
        return result[target];
    }
}

Reference

DP bottom-up

public class Solution {
    public int combinationSum4(int[] nums, int target) {
        int n=nums.length;
        if (n<=0) return 0;
        int result[] = new int[target+1];
        result[0]=1;
        for(int i=1;i<target+1;i++){
            for(int j=0;j<n;j++){
                 if (i-nums[j]>=0){
                    result[i]+=result[i-nums[j]];
                }
            }
        }
        return result[target];
    }
}
评注:把result[0]赋值为1, 这样每次就不用做i-nums[j]==0的判断了。

DP up-bottom

private int[] dp;

public int combinationSum4(int[] nums, int target) {
    dp = new int[target + 1];
    Arrays.fill(dp, -1);
    dp[0] = 1;
    return helper(nums, target);
}

private int helper(int[] nums, int target) {
    if (dp[target] != -1) {
        return dp[target];
    }
    int res = 0;
    for (int i = 0; i < nums.length; i++) {
        if (target >= nums[i]) {
            res += helper(nums, target - nums[i]);
        }
    }
    dp[target] = res;
    return res;
}

Recursive

public int combinationSum4(int[] nums, int target) {
    if (target == 0) {
        return 1;
    }
    int res = 0;
    for (int i = 0; i < nums.length; i++) {
        if (target >= nums[i]) {
            res += combinationSum4(nums, target - nums[i]);
        }
    }
    return res;
}

不可取,还是要用动态规划。


总结:You are the best.

如果有负数的话,相当于把整个数组向左平移一个数组的最小值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值