452. Minimum Number of Arrows to Burst Balloons**

188 篇文章 0 订阅
3 篇文章 0 订阅

There are a number of spherical balloons spread in two-dimensional space. For each balloon, provided input is the start and end coordinates of the horizontal diameter. Since it's horizontal, y-coordinates don't matter and hence the x-coordinates of start and end of the diameter suffice. Start is always smaller than end. There will be at most 104 balloons.

An arrow can be shot up exactly vertically from different points along the x-axis. A balloon with xstart and xend bursts by an arrow shot at x if xstart ≤ x ≤ xend. There is no limit to the number of arrows that can be shot. An arrow once shot keeps travelling up infinitely. The problem is to find the minimum number of arrows that must be shot to burst all balloons.

Example:

Input:
[[10,16], [2,8], [1,6], [7,12]]

Output:
2

Explanation:
One way is to shoot one arrow for example at x = 6 (bursting the balloons [2,8] and [1,6]) and another arrow at x = 11 (bursting the other two balloons).
    public int findMinArrowShots(int[][] points) {
        if(points==null || points.length==0||points[0].length==0) return 0;
        Arrays.sort(points,new Comparator<int[]>(){
            public int compare(int[] a, int[] b){
                if(a[0]==b[0]) return a[1]-b[1];
                else return a[0]-b[0];
            }
        });
        int minArrows = 1;
        int arrowLimit = points[0][1];
        for(int i=1;i<points.length;i++){
            int[] baloon = points[i];
            if(baloon[0]<=arrowLimit){
                arrowLimit = Math.min(arrowLimit,baloon[1]);
            }
            else{
                minArrows++;
                arrowLimit = baloon[1];
            }
        }
        return minArrows;
    }
总结:先针对左端点排序,再对右端点搜寻范围。




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值