在二维空间中有许多球形的气球。对于每个气球,提供的输入是水平方向上,气球直径的开始和结束坐标。由于它是水平的,所以y坐标并不重要,因此只要知道开始和结束的x坐标就足够了。开始坐标总是小于结束坐标。平面内最多存在104个气球。
一支弓箭可以沿着x轴从不同点完全垂直地射出。在坐标x处射出一支箭,若有一个气球的直径的开始和结束坐标为 xstart,xend, 且满足 xstart ≤ x ≤ xend,则该气球会被引爆。可以射出的弓箭的数量没有限制。 弓箭一旦被射出之后,可以无限地前进。我们想找到使得所有气球全部被引爆,所需的弓箭的最小数量。
Example:
输入:
[[10,16], [2,8], [1,6], [7,12]]
输出:
2
解释:
对于该样例,我们可以在x = 6(射爆[2,8],[1,6]两个气球)和 x = 11(射爆另外两个气球)。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/minimum-number-of-arrows-to-burst-balloons
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
思路
每次在区间集合中选取相交的区间合并成新的区间,删除旧区间,新区间加入区间集合,直到最后无法合并为止,最后剩下的区间个数就是射击的次数
(这个贪心有点像构造哈夫曼树的贪心)
证明:
已知:
- n个相交的区间可以有一只箭射爆
1~n
个区间的相交结果,是【1~n-1
区间相交结果】 交【 第n区间】
(即交运算可结合,可交换)
最少的射击次数取决于最多能有几个区间相交,当所有区间都相交时,自然可以只射击一次,以此类推
预处理
需要将区间按照右端点升序,右端点相同则左端点升序排序,这样可以花费常数时间找到可能可以合并的区间(即相邻区间)
使用双指针 l
指向左边的待合并区间,r
指向右边的新遍历到的区间
- 如果能够合并,将新区间的值复制到 r 指向的区间,然后 l=r, r++ ,并且射击次数-1
- 如果不能,直接向后继续找,将 r 区间作为待合并的区间,l=r, r++
代码
class Solution {
public