LeetCode:452. 用最少数量的箭引爆气球 贪心

这篇博客介绍了一个LeetCode的题目452,目标是找出引爆所有气球所需的最少箭数。采用贪心策略,先将气球按右端点升序排序,然后通过双指针方法尝试合并相交的气球区间,以减少箭的数量。最后,博主提供了问题的证明和预处理步骤,以及代码实现。
摘要由CSDN通过智能技术生成

在二维空间中有许多球形的气球。对于每个气球,提供的输入是水平方向上,气球直径的开始和结束坐标。由于它是水平的,所以y坐标并不重要,因此只要知道开始和结束的x坐标就足够了。开始坐标总是小于结束坐标。平面内最多存在104个气球。

一支弓箭可以沿着x轴从不同点完全垂直地射出。在坐标x处射出一支箭,若有一个气球的直径的开始和结束坐标为 xstart,xend, 且满足 xstart ≤ x ≤ xend,则该气球会被引爆。可以射出的弓箭的数量没有限制。 弓箭一旦被射出之后,可以无限地前进。我们想找到使得所有气球全部被引爆,所需的弓箭的最小数量。

Example:

输入:
[[10,16], [2,8], [1,6], [7,12]]

输出:
2

解释:
对于该样例,我们可以在x = 6(射爆[2,8],[1,6]两个气球)和 x = 11(射爆另外两个气球)。

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/minimum-number-of-arrows-to-burst-balloons
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

思路

每次在区间集合中选取相交的区间合并成新的区间,删除旧区间,新区间加入区间集合,直到最后无法合并为止,最后剩下的区间个数就是射击的次数
在这里插入图片描述
(这个贪心有点像构造哈夫曼树的贪心)

证明:

已知:

  • n个相交的区间可以有一只箭射爆
  • 1~n个区间的相交结果,是【1~n-1区间相交结果】 交【 第n区间】

(即交运算可结合,可交换)

最少的射击次数取决于最多能有几个区间相交,当所有区间都相交时,自然可以只射击一次,以此类推

预处理
需要将区间按照右端点升序,右端点相同则左端点升序排序,这样可以花费常数时间找到可能可以合并的区间(即相邻区间)

使用双指针 l 指向左边的待合并区间,r指向右边的新遍历到的区间

  • 如果能够合并,将新区间的值复制到 r 指向的区间,然后 l=r, r++ ,并且射击次数-1
  • 如果不能,直接向后继续找,将 r 区间作为待合并的区间,l=r, r++

代码

class Solution {
   
public
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值