313. Super Ugly Number**

188 篇文章 0 订阅
7 篇文章 0 订阅

Write a program to find the nth super ugly number.

Super ugly numbers are positive numbers whose all prime factors are in the given prime list primes of size k. For example, [1, 2, 4, 7, 8, 13, 14, 16, 19, 26, 28, 32] is the sequence of the first 12 super ugly numbers given primes = [2, 7, 13, 19] of size 4.

Note:
(1) 1 is a super ugly number for any given primes.
(2) The given numbers in primes are in ascending order.
(3) 0 < k ≤ 100, 0 < n ≤ 106, 0 < primes[i] < 1000.
(4) The nth super ugly number is guaranteed to fit in a 32-bit signed integer.


Basic idea is same as ugly number II, new ugly number is generated by multiplying a prime with previous generated ugly number. One catch is need to remove duplicate

Let's start with the common solution from ugly number II 36 ms, Theoretically O(kN)

public int nthSuperUglyNumberI(int n, int[] primes) {
    int[] ugly = new int[n];
    int[] idx = new int[primes.length];

    ugly[0] = 1;
    for (int i = 1; i < n; i++) {
        //find next
        ugly[i] = Integer.MAX_VALUE;
        for (int j = 0; j < primes.length; j++)
            ugly[i] = Math.min(ugly[i], primes[j] * ugly[idx[j]]);
        
        //slip duplicate
        for (int j = 0; j < primes.length; j++) {
            while (primes[j] * ugly[idx[j]] <= ugly[i]) idx[j]++;
        }
    }

    return ugly[n - 1];
}

If you look at the above solution, it has redundant multiplication can be avoided, and also two for loops can be consolidated into one. This trade-off space for speed. 23 ms, Theoretically O(kN)

public int nthSuperUglyNumber(int n, int[] primes) {
        int[] ugly = new int[n];
        int[] idx = new int[primes.length];
        int[] val = new int[primes.length];
        Arrays.fill(val, 1);

        int next = 1;
        for (int i = 0; i < n; i++) {
            ugly[i] = next;
            
            next = Integer.MAX_VALUE;
            for (int j = 0; j < primes.length; j++) {
                //skip duplicate and avoid extra multiplication
                if (val[j] == ugly[i]) val[j] = ugly[idx[j]++] * primes[j];
                //find next ugly number
                next = Math.min(next, val[j]);
            }
        }

        return ugly[n - 1];
    }

Can we do better? Theoretically yes, by keep the one candidates for each prime in a heap, it can improve the theoretical bound to O( log(k)N ), but in reality it's 58 ms. I think it's the result of using higher level object instead of primitive. Can be improved by writing an index heap(http://algs4.cs.princeton.edu/24pq/IndexMinPQ.java.html)

public int nthSuperUglyNumberHeap(int n, int[] primes) {
    int[] ugly = new int[n];

    PriorityQueue<Num> pq = new PriorityQueue<>();
    for (int i = 0; i < primes.length; i++) pq.add(new Num(primes[i], 1, primes[i]));
    ugly[0] = 1;

    for (int i = 1; i < n; i++) {
        ugly[i] = pq.peek().val;
        while (pq.peek().val == ugly[i]) {
            Num nxt = pq.poll();
            pq.add(new Num(nxt.p * ugly[nxt.idx], nxt.idx + 1, nxt.p));
        }
    }

    return ugly[n - 1];
}

private class Num implements Comparable<Num> {
    int val;
    int idx;
    int p;

    public Num(int val, int idx, int p) {
        this.val = val;
        this.idx = idx;
        this.p = p;
    }

    @Override
    public int compareTo(Num that) {
        return this.val - that.val;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值