自考 《04741 计算机网络原理》-距离向量路由选择算法-毒性逆转技术

本文以通俗易懂的方式解释了距离向量路由选择算法中的毒性逆转技术,该技术用于解决无穷计数问题。通过举例说明,描述了当网络路径发生改变时,如何通过设置无限距离避免错误的路由更新循环,最终实现网络路由的正确收敛。
摘要由CSDN通过智能技术生成

书里描述这一段用语过于专业,我这里写的通俗易懂点

毒性逆转技术:是为了解决无穷计数问题的方案

 

0b8acc2b8fe04de1b38f4a4b7f5381da.png

 如上图

无穷计数问题为什么会发生?

初始:x到y,z结点最短距离分别是:xy=4;xz(x➡y➡z)=5 。记住zx=5,且是通过y这条路计算出来的

变化:xy从4变成50。

因为发生变化此时y重新计算最短距离:

未变化之前zx最短距离为5 ,y结点不知道zx的最短距离是通过z➡y➡x得出来的,而此时y➡x早已从4变成50,此时这条路应该是zx=50+1=51了,y不知道啊,还默认zx=5, 此时y去x两条路 ①y➡x=50 ;②y➡zx=1+5=6。50>6,那y结点就认为最短距离yx=6。

y然后通告给z说,z此时有两条路去x,分别是①z➡y➡x=1+6=7和②z➡x=40。40>7此时z就把zx的最短距离改为7,z然后又通告给y,y又重新计算············

其实从xy从4变成50之后,xy和xz的最短距离应该是xy=41;xy=41;zx=40

一直计算到大于40,才从那条路跳出来,结束这次错误的重复

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值