数论基础持续更新中~

1,数论

        1.1 素数与互素

1.整除与素数

        如果整数 a , b , c 之间存在关系 a = b · c 且 b ≠0,则称 b 整除 a 或者 a 能被 b 整除,且 b 是 a 的因子或除数, a 是 b 的倍数,记为 b | a 。
 

性质1 a | a 。
性质2 如果 a | 1,则有 a =士1。
性质3 对于任何 a ≠0,则有 a |0。
性质4 如果 a | b 且 b | a ,那么 a =士 b 。
性质5 如果 a | b 且 b | c ,则有 a | c 。
性质6 如果 a | b 且 b | c ,那么对所有的 x , y∈Z ,有 a |( bx + cy )(这里 Z 表示整数集,下同)。


性质的解读 :注意 a = b · c 这个表达式的位置 ,初学可以将b的位置默认为被除数 
1.  a |  a    
       可以理解为  a = a · 1 
2.如果 a | 1,则有 a =士1
        可以理解为 1= a · a  由此可以判断a= 士 1
3.对于任何 a ≠0,则有 a | 0 。
        可以理解为 0 = a · c  在这里a 充当的被除数 a | 0 这个式字可以成立
4.如果 a | b 且 b | a ,那么 a =士 b 。
        可以理解为 a = b · c 且 b = a · c   这里的 a b 可以判断出是相同的,即也是相同的 故 a 和 b 应该是相反数  有 a = 士 b 
5.如果 a | b 且 b | c ,则有 a | c  
        可以理解为 b = a · x 且 c = b · i 可以判断 a 为非 0 数,c 是一个任意数 根据 a | c 可以判断出c 是除数 a 是被除数的位置 ,因此 a | c  成立 
6.如果 a | b 且 b | c ,那么对所有的 x , y ∈ Z ,有 a | ( bx + cy )(这里 Z 表示整数集,下同)。
        可以理解为 b = a · m 且 c = b · n ,  有 bx+cy=a · S 在这些表达式中 我们只要根据已知可以了解到 a 是非 0  则可以性质6 成立 
                在上述中除了性质中规定的 其他数值均为随机设定不存在任何含义,仅仅方便理解
2.最大公因子与互素

                                注:如果 a 和 b 全为 0,则它们的公因子和最大公因子均无意义。

设 a , b , c ∈ Z ,如果 c | a 且 c | b ,则称 c 是 a 与 b 的公因子或公约数。
如果 d 满足下列条件,则称正整数 d 是 a 与 b 的最大公因子或最大公约数。
(1) d 是 a 与 b 的公因子。
(2)如果 c 也是 a 与 b 的公因子,则 c 必是 d 的因子。
可见, a 与 b 的最大公因子就是 a 与 b 的公因子中最大的那一个,记为 d = gcd ( a , b )= max { c | { c | a 且 c | b }}。
如果 a 与 b 的最大公因子为1,即 gcd ( a , b )=1,则称整数 a 与 b 互素。
最大公因子有以下性质:
性质1任何不全为0的两个整数的最大公因子存在且唯一。
性质2设整数 a 与 b 不全为0,则存在整数 x 和 y ,使得 ax + by = gcd ( a , b )。特别地,如果 a 与 b 互素,则存在整数 x 和 y ,使得 ax + by =1。
性质3如果 gcd ( a , b )= d ,那么 gcd (a/d,b/d)=1
性质4如果 gcd ( a , x )= ged ( b , x )=1,那么 gcd ( ab , x )=1。
性质5如果 c | ( ab ),且 ged ( b , c )=1,那么 c | a 。


解释:在计算中注意啊,a,b,c 均为素数
 1、设 a , b , c∈Z ,如果 c l a 且 c | b ,则称 c 是 a 与 b 的公因子或公约数。
        根据我们之前的理解 c l a 且 c | b 可以书写为 a = c · x 且 b = c · n  显然可以了解到 a 和 b 的公因数和公约数都是 c  但
2、如果 d 满足下列条件,则称正整数 d 是 a 与 b 的最大公因子或最大公约数。
(1) d 是 a 与 b 的公因子。
(2)如果 c 也是 a 与 b 的公因子,则 c 必是 d 的因子。

        对此我们先看 d 满足的条件,

(1.)明显可以看出来成立,这里翻译为表达式为 a = d · x 与 b = d · n 

(2.)翻译为表达式 a = c · x 与 b = c · n 可以判断为 c 是 a 与 b 的公因子或公约数,这里d 已经明确指出来,d 是最大公因子或最大公约数,那么c也只能是d的因子

接下来对此后面的一些性质,将引入欧拉函数gcd( a , b )= 1 来进行描述下列性质:

### 回答1: 1742哥德巴赫欧拉提出了以下猜想“任一大2整数都可写成三个质数之和”。常见的猜想陈述为欧拉的版本,即任一大2的偶数都可写成两个素数之和,并称为“强哥德巴赫猜想”或“关于偶数的哥德巴赫猜想”。 ### 回答2哥德巴赫猜想数论领域中的一个经典问题,至今仍未被完全证明。这个猜想的核心是:对于任何一个大于2的偶数N,可以表示为两个素数之和。欧拉的版本并没有给出完整的证明,但是一些特殊的情况已经被证明了。 哥德巴赫猜想的重要性在于它有广泛的应用,例如在密码学和计算机安全领域中有应用。如果哥德巴赫猜想被证明,则可以用来生成随机的加密密钥,从而更加安全地保护网络数据。 关于哥德巴赫猜想的证明,有许多数学家试图证明它,但都没有成功。其中最著名的尝试是Vinogradov对哥德巴赫猜想的证明,他利用了数学分析和高级数论中的一些技巧,但是证明过程非常复杂,仍然有一些缺陷。目前,仍然没有一种方法可以证明这个猜想。 虽然哥德巴赫猜想仍未被证明,但是有一些关于素数的定理已经被证明。比如素数分布的性质,素数的奇妙性质等。这些定理对于研究哥德巴赫猜想提供了一些线索,使得数学家们继续为证明这一经典问题而努力。 ### 回答3: 哥德巴赫猜想是由德国数学家克里斯蒂安·哥德巴赫1742提出的,他认为任何大于2的偶数都可以表示为三个质数之和。但哥德巴赫并没有给出任何证明。随后,欧拉对这个猜想进行了修改,将三个质数的形式改为两个素数的形式,并推广到了所有大于2的偶数。因此这个经典的猜想也被称为强哥德巴赫猜想。 在之后的几个世纪里,许多数学家都尝试过证明这个猜想,但是都没有成功。哥德巴赫猜想成为了数学界的一道难题。直到20世纪初,英国数学家哈代提出了新的思路,并称之为"解析数论"。该方法采用的是解析函数和调和分析的方法,以求证哥德巴赫猜想,但是一直没有得到完满的证明。 近来,数学界对哥德巴赫猜想的研究取得了重要进展。2009,一位美国数学家格林和他的学生塔奇科夫证明,任何一个大于等于10¹⁸的偶数都是三个质数的和。并且,他们还证明了一个更为一般性的结论,即“任何一个大于等于7的奇数都是三个质数之和”。但是格林和塔奇科夫的方法并不适用于小于10¹⁸的偶数。 目前,哥德巴赫猜想仍然是数学界的未解之谜。虽然初步的进展已经被取得,但仍然需要更多优秀的数学家解决这个问题。这也体现了数学领域中的经典难题,激励着更多人探索更丰富的数学世界。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

安红豆.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值