1,数论
1.1 素数与互素
1.整除与素数
如果整数 a , b , c 之间存在关系 a = b · c 且 b ≠0,则称 b 整除 a 或者 a 能被 b 整除,且 b 是 a 的因子或除数, a 是 b 的倍数,记为 b | a 。
性质1 a | a 。
性质2 如果 a | 1,则有 a =士1。
性质3 对于任何 a ≠0,则有 a |0。
性质4 如果 a | b 且 b | a ,那么 a =士 b 。
性质5 如果 a | b 且 b | c ,则有 a | c 。
性质6 如果 a | b 且 b | c ,那么对所有的 x , y∈Z ,有 a |( bx + cy )(这里 Z 表示整数集,下同)。
性质的解读 :注意 a = b · c 这个表达式的位置 ,初学可以将b的位置默认为被除数
1. a | a
可以理解为 a = a · 1
2.如果 a | 1,则有 a =士1
可以理解为 1= a · a 由此可以判断a= 士 1
3.对于任何 a ≠0,则有 a | 0 。
可以理解为 0 = a · c 在这里a 充当的被除数 a | 0 这个式字可以成立
4.如果 a | b 且 b | a ,那么 a =士 b 。
可以理解为 a = b · c 且 b = a · c 这里的 a b 可以判断出是相同的,即也是相同的 故 a 和 b 应该是相反数 有 a = 士 b
5.如果 a | b 且 b | c ,则有 a | c 。
可以理解为 b = a · x 且 c = b · i 可以判断 a 为非 0 数,c 是一个任意数 根据 a | c 可以判断出c 是除数 a 是被除数的位置 ,因此 a | c 成立
6.如果 a | b 且 b | c ,那么对所有的 x , y ∈ Z ,有 a | ( bx + cy )(这里 Z 表示整数集,下同)。
可以理解为 b = a · m 且 c = b · n , 有 bx+cy=a · S 在这些表达式中 我们只要根据已知可以了解到 a 是非 0 则可以性质6 成立
在上述中除了性质中规定的 其他数值均为随机设定不存在任何含义,仅仅方便理解
2.最大公因子与互素
注:如果 a 和 b 全为 0,则它们的公因子和最大公因子均无意义。
设 a , b , c ∈ Z ,如果 c | a 且 c | b ,则称 c 是 a 与 b 的公因子或公约数。
如果 d 满足下列条件,则称正整数 d 是 a 与 b 的最大公因子或最大公约数。
(1) d 是 a 与 b 的公因子。
(2)如果 c 也是 a 与 b 的公因子,则 c 必是 d 的因子。
可见, a 与 b 的最大公因子就是 a 与 b 的公因子中最大的那一个,记为 d = gcd ( a , b )= max { c | { c | a 且 c | b }}。
如果 a 与 b 的最大公因子为1,即 gcd ( a , b )=1,则称整数 a 与 b 互素。
最大公因子有以下性质:
性质1任何不全为0的两个整数的最大公因子存在且唯一。
性质2设整数 a 与 b 不全为0,则存在整数 x 和 y ,使得 ax + by = gcd ( a , b )。特别地,如果 a 与 b 互素,则存在整数 x 和 y ,使得 ax + by =1。
性质3如果 gcd ( a , b )= d ,那么 gcd (a/d,b/d)=1
性质4如果 gcd ( a , x )= ged ( b , x )=1,那么 gcd ( ab , x )=1。
性质5如果 c | ( ab ),且 ged ( b , c )=1,那么 c | a 。
解释:在计算中注意啊,a,b,c 均为素数
1、设 a , b , c∈Z ,如果 c l a 且 c | b ,则称 c 是 a 与 b 的公因子或公约数。
根据我们之前的理解 c l a 且 c | b 可以书写为 a = c · x 且 b = c · n 显然可以了解到 a 和 b 的公因数和公约数都是 c 但
2、如果 d 满足下列条件,则称正整数 d 是 a 与 b 的最大公因子或最大公约数。
(1) d 是 a 与 b 的公因子。
(2)如果 c 也是 a 与 b 的公因子,则 c 必是 d 的因子。
对此我们先看 d 满足的条件,
(1.)明显可以看出来成立,这里翻译为表达式为 a = d · x 与 b = d · n
(2.)翻译为表达式 a = c · x 与 b = c · n 可以判断为 c 是 a 与 b 的公因子或公约数,这里d 已经明确指出来,d 是最大公因子或最大公约数,那么c也只能是d的因子
接下来对此后面的一些性质,将引入欧拉函数gcd( a , b )= 1 来进行描述下列性质: