Spring AI之Chat Model API


聊天模型API为开发者提供了将基于人工智能的聊天补全功能集成到应用程序中的能力。它利用预训练语言模型(如GPT(生成式预训练变换器)),根据自然语言输入生成类人响应。

该API通常通过向AI模型发送提示或部分对话内容来工作,模型随后基于其训练数据和对自然语言模式的理解生成对话的补全或延续内容。生成的回复将返回给应用程序,供其向用户展示或进行进一步处理。

Spring AI聊天模型API旨在提供一个与各类AI模型交互的简洁且可移植的接口,使开发者能够以最小的代码改动切换不同模型。该设计理念与Spring框架的模块化和可替换性哲学保持一致。

通过使用Prompt(输入封装)和ChatResponse(输出处理)等配套类,聊天模型API统一了与AI模型的通信流程。它管理请求准备和响应解析的复杂性,提供直接简化的API交互方式。

您可在可用实现部分查看详细实施方案,并在聊天模型对比部分获得各模型的详细比较分析。

API 概述

本节提供 Spring AI 聊天模型 API 接口及相关类的使用指南。

ChatModel

以下是 ChatModel 接口的定义:

public interface ChatModel extends Model<Prompt, ChatResponse> {
   
   

    default String call(String message) {
   
   ...}

    @Override
    ChatResponse call(Prompt prompt);
}

带 String 参数的 call() 方法简化了初始使用,避免了复杂的 Prompt 和 ChatResponse 类的直接操作。在实际应用中,更常用的是接收 Prompt 实例并返回 ChatResponse 的 call() 方法 。

StreamingChatModel

以下是 StreamingChatModel 接口的定义:

public interface StreamingChatModel extends StreamingModel<Prompt, ChatResponse> {
   
   

    default Flux<String> stream(String message) {
   
   ...}

    @Override
    Flux<ChatResponse> stream(Prompt prompt
### Spring AI 模型用于聊天功能实现 在当前的技术背景下,Spring框架本身并不直接提供特定的AI模型支持。然而,可以借助外部工具和库来集成基于机器学习或自然语言处理(NLP)的功能到Spring应用程序中。 #### 集成Ollama创建自定义模型 通过命令`ollama create mymodel -f ./Modelfile`[^1],开发者能够利用Ollama平台构建并部署自己的AI模型。此过程允许将预训练的语言模型调整至适合具体应用场景的状态。对于聊天应用而言,这一步骤至关重要,因为它直接影响对话的质量与上下文理解能力。 #### 数据准备与SVM建模 虽然上述提到的是使用R语言中的e1071包来进行支持向量机(SVM)的学习[`svm(y ~ X1 + X2, data=data)`][^2],但在Java/Spring环境中,则可能更多依赖于诸如Weka或者Apache Mahout这样的开源项目完成相似的任务。这些工具可以帮助我们更好地理解和分类用户的输入数据,从而提高响应的相关性和准确性。 #### Tomcat配置文件复制操作 有时,在设置复杂的Web服务时(比如运行带有高级特性的Spring Boot应用),需要手动调整服务器环境变量或者其他参数。像这样一条指令 `sudo cp /var/lib/tomcat7/conf/web.xml ./conf/web.xml` [^3] 就是用来备份原始Tomcat实例下的web.xml配置文档以便后续修改之用。尽管这不是直接关于AI的部分,但它体现了整个软件开发生命周期内的一个重要环节——即确保所有组件都能协同工作良好无误。 #### 实现步骤概述 为了实现在Spring基础上加入人工智能驱动的聊天机器人解决方案,以下是几个主要方向: - **选用合适的NLP API/SDK**: 考虑采用Google Dialogflow、Microsoft Bot Framework或是Hugging Face Transformers等知名产品作为基础架构的一部分; - **设计RESTful接口**: 使用@Controller注解定义端点接收来自前端的消息请求并将它们传递给后台处理器; - **调优业务逻辑层**: 结合实际需求定制化算法流程图以及异常捕捉机制等等; 最后值得注意的一点是,随着技术不断进步更新迭代速度加快,建议定期查阅官方最新版指南说明以获取最前沿的知识补充参考资料链接如下: ```java @RestController @RequestMapping("/chatbot") public class ChatBotController { @Autowired private NlpService nlpService; @PostMapping("/message") public ResponseEntity<String> processMessage(@RequestBody String message){ try{ String response = nlpService.getResponse(message); return new ResponseEntity<>(response , HttpStatus.OK); }catch(Exception e){ return new ResponseEntity<>("Error processing request",HttpStatus.INTERNAL_SERVER_ERROR); } } } ```
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

NtK11KGXVkk

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值