这里写自定义目录标题
聊天模型API为开发者提供了将基于人工智能的聊天补全功能集成到应用程序中的能力。它利用预训练语言模型(如GPT(生成式预训练变换器)),根据自然语言输入生成类人响应。
该API通常通过向AI模型发送提示或部分对话内容来工作,模型随后基于其训练数据和对自然语言模式的理解生成对话的补全或延续内容。生成的回复将返回给应用程序,供其向用户展示或进行进一步处理。
Spring AI聊天模型API旨在提供一个与各类AI模型交互的简洁且可移植的接口,使开发者能够以最小的代码改动切换不同模型。该设计理念与Spring框架的模块化和可替换性哲学保持一致。
通过使用Prompt(输入封装)和ChatResponse(输出处理)等配套类,聊天模型API统一了与AI模型的通信流程。它管理请求准备和响应解析的复杂性,提供直接简化的API交互方式。
您可在可用实现部分查看详细实施方案,并在聊天模型对比部分获得各模型的详细比较分析。
API 概述
本节提供 Spring AI 聊天模型 API 接口及相关类的使用指南。
ChatModel
以下是 ChatModel 接口的定义:
public interface ChatModel extends Model<Prompt, ChatResponse> {
default String call(String message) {
...}
@Override
ChatResponse call(Prompt prompt);
}
带 String 参数的 call() 方法简化了初始使用,避免了复杂的 Prompt 和 ChatResponse 类的直接操作。在实际应用中,更常用的是接收 Prompt 实例并返回 ChatResponse 的 call() 方法 。
StreamingChatModel
以下是 StreamingChatModel 接口的定义:
public interface StreamingChatModel extends StreamingModel<Prompt, ChatResponse> {
default Flux<String> stream(String message) {
...}
@Override
Flux<ChatResponse> stream(Prompt prompt

最低0.47元/天 解锁文章
600

被折叠的 条评论
为什么被折叠?



