Spring AI之向量数据库


向量数据库是一种在人工智能应用中发挥关键作用的专用数据库类型。
在向量数据库中,查询方式与传统关系型数据库存在显著差异。它们并非进行精确匹配,而是执行相似性搜索。当以向量作为查询输入时,向量数据库会返回与查询向量"相似"的向量集合。关于这种相似性在高层级的计算方式,详见《向量相似性》章节的说明。

向量数据库用于将数据与人工智能模型进行整合。其使用流程的第一步是将数据加载到向量数据库中。当需要向AI模型发送用户查询时,系统会首先检索一组相似文档。这些文档将作为用户问题的上下文信息,与用户查询一起被发送至AI模型。这种技术被称为检索增强生成(Retrieval Augmented Generation, RAG)。

后续章节将介绍Spring AI框架中用于操作多种向量数据库实现的接口规范,以及相关高级用法示例。
最后一节旨在解析向量数据库中相似性搜索技术的底层实现原理。

API 概述

本节作为 Spring AI 框架中 VectorStore 接口 及其关联类的指南。
Spring AI 通过 VectorStore 接口 提供了与向量数据库交互的抽象化 API。
以下是 VectorStore 接口 的定义:

public interface VectorStore extends DocumentWriter {
   
   

    default String getName() {
   
   
        return this.getClass().getSimpleName();
    }

    void add(List<Document> documents);

    void delete(List<String> idList);

    void delete(Filter.Expression filterExpression);

    default void delete(String filterExpression) {
   
    ... };

    List<Document> similaritySearch(String query);

    List<Document> similaritySearch(SearchRequest request);

    default <T> Optional<T> getNativeClient() {
   
   
        return Optional.empty();
    }
}

以及相关的 SearchRequest 构建器 :

public class SearchRequest {
   
   

    public static final double SIMILARITY_THRESHOLD_ACCEPT_ALL = 0.0;
    public static final int DEFAULT_TOP_K = 4;

    private String query = "";
    private int topK = DEFAULT_TOP_K;
    private double similarityThreshold = SIMILARITY_THRESHOLD_ACCEPT_ALL;
    @Nullable
    private Filter.Expression filterExpression;

    public static Builder from(SearchRequest originalSearchRequest) {
   
   
        return builder().query(originalSearchRequest.getQuery())
            .topK(originalSearchRequest.getTopK())
            .similarityThreshold(originalSearchRequest.getSimilarityThreshold())
            .filterExpression(originalSearchRequest.getFilterExpression());
    }

    public static class Builder {
   
   
        private final SearchRequest searchRequest = new SearchRequest();

        public Builder query(String query) {
   
   
            Assert.notNull(query, "查询内容不能为空。");
            this.searchRequest.query = query;
            return this;
        }

        public Builder topK(int topK) {
   
   
            Assert
Spring框架中手动集成向量数据库,尤其是与Spring AI结合使用时,通常涉及以下几个关键步骤。这些步骤涵盖了配置、数据加载以及查询处理等方面。 ### 配置向量数据库连接 首先,需要在`application.properties`或`application.yml`文件中配置向量数据库的连接信息。以Milvus为例,可以设置如下属性: ```properties spring.ai.vectorstore.milvus.database-name=mydb spring.ai.vectorstore.milvus.collection-name=mycollection spring.ai.vectorstore.milvus.embedding-dimension=768 spring.ai.vectorstore.milvus.index-type=IVF_FLAT spring.ai.vectorstore.milvus.metric-type=COSINE spring.ai.vectorstore.milvus.client.host=localhost spring.ai.vectorstore.milvus.client.port=19530 ``` 上述配置指定了数据库名称、集合名称、嵌入维度等参数[^2]。 ### 初始化向量存储 接下来,可以通过编写Java代码来初始化向量存储并执行必要的操作。例如,创建一个服务类来封装所有与向量数据库交互的方法。下面是一个简单的示例,展示了如何创建一个向量存储实例,并插入一些初始数据: ```java import org.springframework.beans.factory.annotation.Autowired; import org.springframework.stereotype.Service; import spring.ai.vectorstore.VectorStore; @Service public class VectorDatabaseService { private final VectorStore vectorStore; @Autowired public VectorDatabaseService(VectorStore vectorStore) { this.vectorStore = vectorStore; } // 示例方法:添加文档到向量数据库 public void addDocumentsToVectorStore() { String documentText = "这是一个测试文档"; vectorStore.add(documentText); // 假设add方法接受字符串作为输入 } } ``` 在这个例子中,`VectorStore`接口提供了与向量数据库交互的基本功能,如添加文档和搜索相似项[^1]。 ### 查询相似文档 为了实现检索增强生成(RAG),当用户提交查询时,系统会先从向量数据库中检索出一组最相关的文档。这一步骤可以通过调用`search`方法完成。以下是展示如何进行相似性搜索的一个例子: ```java // 用户提供的查询文本 String userQuery = "我正在寻找有关人工智能的信息"; // 搜索相似文档 List<String> similarDocuments = vectorStore.search(userQuery); // 将相似文档作为上下文传递给AI模型 String context = String.join("\n", similarDocuments); String response = aiModel.generateResponse(context + "\n" + userQuery); ``` 这里假设存在一个名为`aiModel`的对象,它负责根据给定的上下文生成回答。通过这种方式,可以有效地利用向量数据库中的信息来丰富最终的回答内容[^1]。 ### 清理与维护 最后,在开发过程中可能需要定期清理环境以便重新开始实验。对于Docker容器化的Milvus实例,可以使用以下命令停止并删除现有容器及其卷: ```bash docker-compose down; rm -Rf ./volumes ``` 如果遇到资源不足的问题,则可以尝试运行`docker system prune --all --force --volumes`来释放空间[^2]。 ---
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

NtK11KGXVkk

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值