1、题目
给你一个按 非递减顺序 排序的整数数组 nums,返回 每个数字的平方 组成的新数组,要求也按 非递减顺序 排序。
示例 1:
输入:nums = [-4,-1,0,3,10]
输出:[0,1,9,16,100]
解释:平方后,数组变为 [16,1,0,9,100]
排序后,数组变为 [0,1,9,16,100]
示例 2:
输入:nums = [-7,-3,2,3,11]
输出:[4,9,9,49,121]
提示:
1 <= nums.length <= 104
-104 <= nums[i] <= 104
nums 已按 非递减顺序 排序
进阶:
请你设计时间复杂度为 O(n) 的算法解决本问题
2、解析
本题要求将一个有序数组的每个数字的平方,按有序的方式返回。
- 最简单的做法当然是直接将每一个数字平方,然后排序返回,即暴力解法。时间复杂度至少为O(n*log(n)),此处不做演示。
- 我们可以利用哈希表记录绝对值为 i 的数字有多少个,然后遍历哈希表将 i * i 尾插到结果数组中,即哈希表法。时间复杂度为O(n),但每次遍历必须跑完整个哈希表,在绝对值最大值和绝对值最小值相差较大 且 数据量分布不均匀时浪费较大。
- 我们可以充分利用数组已经有序的条件,利用双指针left和right,从绝对值最小值开始,left向左移动,right向右移动,比较 nums[left] 和 nums[right] 的 绝对值,将较小的一方尾插到结果数组,同时指针移动,即双指针法。时间复杂度为O(n)。
3、代码
哈希表法
class Solution {
public:
//获取绝对值函数
int jue(int a)
{
if(a >= 0)
return a;
else
return -a;
}
vector<int> sortedSquares(vector<int>& nums) {
//---定义变量及初始化---
int n = nums.size();//nums容器长度
vector<int>res;//储存结果容器
int hush[10010] = {0};//哈希表
int maxNum = 0;//绝对值最大者
//---解答---
//获取绝对值最大者,作为遍历哈希表的终止条件
if(jue(nums[0]) >= jue(nums[n - 1]))
maxNum = jue(nums[0]);
else
maxNum = jue(nums[n - 1]);
//将所有数的绝对值加入哈希表中,hush[i]代表:绝对值为i的数字有hush[i]个
for(int i = 0; i < n; i++)
{
int jueNum = jue(nums[i]);
hush[jueNum]++;
}
//遍历哈希表,将其结果尾插至结果容器
for(int i = 0; i <= maxNum; i++)
{
if(hush[i] > 0)
{
res.push_back(i * i);
hush[i]--;
if(hush[i] > 0)
i--;
}
}
return res;
}
};
双指针法
class Solution {
public:
//获取绝对值函数
int jue(int a)
{
if(a >= 0)
return a;
else
return -a;
}
vector<int> sortedSquares(vector<int>& nums) {
//---定义变量及初始化---
vector<int>res;//结果容器
int n = nums.size();//记录结果nums容器的长度
int left, right;//定义双指针
int minNum = 10010, minIndex = 0;//绝对值最小值者及其下标
//---解答---
//获取绝对值最小者及其下标
for(int i = 0; i < n; i++)
{
if(jue(nums[i]) < minNum)
{
minNum = jue(nums[i]);
minIndex = i;
}
}
//双指针法
left = minIndex - 1, right = minIndex;
while(left != -1 || right != n)//退出条件为两指针同时到达终点
{
if(left != -1 && right != n)//当两个指针都未到达终点时
{
//将绝对值较小者尾插至结果容器,同时指针移动
if(jue(nums[left]) <= jue(nums[right]))
{
res.push_back(nums[left] * nums[left]);
left--;
}
else
{
res.push_back(nums[right] * nums[right]);
right++;
}
}
else if(left == -1)//当左指针到达终点且右指针未到达终点时
{
res.push_back(nums[right] * nums[right]);
right++;
}
else if(right == n)//当右指针到达终点且左指针未到达终点时
{
res.push_back(nums[left] * nums[left]);
left--;
}
}
return res;
}
};
4、总结
没有总结