【leetcode】 977. 有序数组的平方 c++实现

1、题目

给你一个按 非递减顺序 排序的整数数组 nums,返回 每个数字的平方 组成的新数组,要求也按 非递减顺序 排序。

示例 1:

输入:nums = [-4,-1,0,3,10]
输出:[0,1,9,16,100]
解释:平方后,数组变为 [16,1,0,9,100]
排序后,数组变为 [0,1,9,16,100]

示例 2:

输入:nums = [-7,-3,2,3,11]
输出:[4,9,9,49,121]

提示:

1 <= nums.length <= 104
-104 <= nums[i] <= 104
nums 已按 非递减顺序 排序

进阶:

请你设计时间复杂度为 O(n) 的算法解决本问题

2、解析

本题要求将一个有序数组的每个数字的平方,按有序的方式返回。

  • 最简单的做法当然是直接将每一个数字平方,然后排序返回,即暴力解法。时间复杂度至少为O(n*log(n)),此处不做演示。
  • 我们可以利用哈希表记录绝对值为 i 的数字有多少个,然后遍历哈希表将 i * i 尾插到结果数组中,即哈希表法。时间复杂度为O(n),但每次遍历必须跑完整个哈希表,在绝对值最大值和绝对值最小值相差较大 且 数据量分布不均匀时浪费较大。
  • 我们可以充分利用数组已经有序的条件,利用双指针left和right,从绝对值最小值开始,left向左移动,right向右移动,比较 nums[left]nums[right]绝对值,将较小的一方尾插到结果数组,同时指针移动,即双指针法。时间复杂度为O(n)。

3、代码

哈希表法

class Solution {
public:
    //获取绝对值函数
    int jue(int a)
    {
        if(a >= 0)
            return a;
        else
            return -a;
    }

    vector<int> sortedSquares(vector<int>& nums) {
        //---定义变量及初始化---
        int n = nums.size();//nums容器长度
        vector<int>res;//储存结果容器
        int hush[10010] = {0};//哈希表
        int maxNum = 0;//绝对值最大者

        //---解答---
        //获取绝对值最大者,作为遍历哈希表的终止条件
        if(jue(nums[0]) >= jue(nums[n - 1]))
            maxNum = jue(nums[0]);
        else
            maxNum = jue(nums[n - 1]);

        //将所有数的绝对值加入哈希表中,hush[i]代表:绝对值为i的数字有hush[i]个
        for(int i = 0; i < n; i++)
        {
            int jueNum = jue(nums[i]);
            hush[jueNum]++;
        }

        //遍历哈希表,将其结果尾插至结果容器
        for(int i = 0; i <= maxNum; i++)
        {
            if(hush[i] > 0)
            {
                res.push_back(i * i);
                hush[i]--;
                if(hush[i] > 0)
                    i--;
            }
        }

        return res;
    }
};

双指针法

class Solution {
public:
    //获取绝对值函数
    int jue(int a)
    {
        if(a >= 0)
            return a;
        else
            return -a;
    }

    vector<int> sortedSquares(vector<int>& nums) {
        //---定义变量及初始化---
        vector<int>res;//结果容器
        int n = nums.size();//记录结果nums容器的长度
        int left, right;//定义双指针
        int minNum = 10010, minIndex = 0;//绝对值最小值者及其下标

        //---解答---
        //获取绝对值最小者及其下标
        for(int i = 0; i < n; i++)
        {
            if(jue(nums[i]) < minNum)
            {
                minNum = jue(nums[i]);
                minIndex = i;
            }
        }

        //双指针法
        left = minIndex - 1, right = minIndex;
        while(left != -1 || right != n)//退出条件为两指针同时到达终点
        {
            if(left != -1 && right != n)//当两个指针都未到达终点时
            {
                //将绝对值较小者尾插至结果容器,同时指针移动
                if(jue(nums[left]) <= jue(nums[right]))
                {
                    res.push_back(nums[left] * nums[left]);
                    left--;
                }
                else
                {
                    res.push_back(nums[right] * nums[right]);
                    right++;
                }
            }
            else if(left == -1)//当左指针到达终点且右指针未到达终点时
            {
                res.push_back(nums[right] * nums[right]);
                    right++;
            }
            else if(right == n)//当右指针到达终点且左指针未到达终点时
            {
                res.push_back(nums[left] * nums[left]);
                    left--;
            }
        }

        return res;
    }
};

4、总结

没有总结

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值