最短路常用算法

最短路常用的三种算法

int Dijkstra( int Start, int End, int N )
{
    memset( Length, 0x7f, sizeof( Length ) );
    memset( Visited, false, sizeof(Visited) );

    Length[Start] = 0;
    Visited[Start] = true;
    int Now = Start;
    for( int i = 0; i < N; i++ )
    {
        for( int j = 1; j <= N; j++ )
        {
            if( Mat[j][Now] + Length[Now] < Length[j] && !Visited[j] )
                Length[j] = Mat[j][Now] + Length[Now];
        }
        for( int j = 1; j <= N; j++ )
            if( !Visited[j] )
            {
                Now = j;
                break;
            }

        for( int j = 1; j <= N; j++ )
        {
            if( Length[j] < Length[Now] && !Visited[j] )
                Now = j;
        }

        Visited[Now] = true;
    }

    return Length[End];
}
int SPFA( int Start, int End, int N )
{
    queue<int> Q;
    memset( Visited, false, sizeof(Visited) );
    memset( Dist, 0x3f, sizeof( Dist ) );

    while( !Q.empty() )
        Q.pop();
    Dist[Start] = 0;
    Visited[Start] = true;

    Q.push( Start );
    while( !Q.empty() )
    {
        int Now = Q.front();
        Q.pop();
        Visited[Now] = false;
        for( int i = 1; i <= N; i++ )
        {
            if( Dist[Now] + Mat[Now][i] < Dist[i] )
            {
                Dist[i] = Dist[Now] + Mat[Now][i];
                if( !Visited[i] )
                {
                    Visited[i] = true;
                    Q.push( i );
                }
            }
        }
    }

    return Dist[End];
}
void Floyd( int Now, int N )
{
    for( int i = 0; i < N; i++ )
        for( int j = 0; j < N; j++ )
            if( Mat[i][j] > Mat[i][Now] + Mat[Now][j] )
                Mat[i][j] = Mat[i][Now] + Mat[Now][j];
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值