浙大PTA 第6章函数-2 使用函数求素数和 (20 分)

使用函数求素数和

prime(p), 其中函数prime当用户传入参数p为素数时返回True,否则返回False. PrimeSum(m,n),函数PrimeSum返回区间[m, n]内所有素数的和。题目保证用户传入的参数1<=m<n。

函数接口定义:

在这里描述函数接口:
prime(p),返回True表示p是素数,返回False表示p不是素数
PrimeSum(m,n),函数返回素数和

裁判测试程序样例:


/* 请在这里填写答案 */

m,n=input().split()
m=int(m)
n=int(n)
print(PrimeSum(m,n))

输入样例:

在这里给出一组输入。例如:

1 10

输出样例:

在这里给出相应的输出。例如:

17

题解:

import math
def prime(num):
    if num==1:
        return False
    for i in range(2,int(math.sqrt(num))+1):
        if num%i==0:
            return False
    else:
        return True
def PrimeSum(m,n):
    sum=0
    for i in range(m,n+1):
        if prime(i):
            sum+=i
    return sum

 

### 回答1: b'6-2' 使用函数求素数和(20 )。 不太清楚题目的意思,是要求把一个数拆成素数之和吗?如果是,可以用动态规划来解决。先构建一个数组 dp,其中 dp[i] 表示数字 i 最少可以拆成多少个素数之和。 初始值:dp[1]=1; 转移方程:dp[i]=min(dp[i-j]+1),其中 1<=j<=i,j是小于等于i的素数。 最终答案就是 dp[6-2]。 ### 回答2: 首先,我们需要知道什么是素数。素数是指只能被1和自身整除的数,如2、3、5、7、11、13等。因此,我们可以写一个判断一个数是否为素数的函数: ```python def is_prime(n): if n <= 1: return False for i in range(2, int(n ** 0.5) + 1): if n % i == 0: return False return True ``` 接着,我们需要用一个函数来求出一定范围内所有素数的和。我们可以使用上述判断素数的函数,遍历这个范围内的每一个数,若该数是素数,则加到素数和中。可以写出这样的函数: ```python def prime_sum(start, end): sum = 0 for i in range(start, end + 1): if is_prime(i): sum += i return sum ``` 其中,`start`和`end`别代表需要求素数和的范围的起始和结束数字。这个函数首先初始化素数和为0,然后遍历从`start`到`end`的每个数,判断是否为素数,如果是,则将其加到素数和中。最后返回素数和。 以上就是使用函数求素数和的方法。使用这个函数,我们可以方便地求出一定范围内所有素数的和,从而提高代码的复用性和可读性。 ### 回答3: 素数指的是只能被1和自己整除的正整数,比如2、3、5、7、11等等,我们需要使用函数来求出一定范围内所有的素数之和。 首先我们需要定义一个函数来判断一个数是否为素数。具体实现方法可以通过试除法,即从2到这个数的平方根范围内,一个一个去试除,如果能整除则不是素数,否则就是素数。代码如下: def is_prime(num): if num <= 1: return False for i in range(2, int(num ** 0.5) + 1): if num % i == 0: return False return True 然后我们需要再定义一个函数求素数之和,这个函数需要接受两个参数,别是起始和结束范围。具体实现方法可以通过遍历这个范围内的数,判断是否为素数,并将素数累加起来。代码如下: def prime_sum(start, end): total = 0 for num in range(start, end + 1): if is_prime(num): total += num return total 最后,我们可以调用prime_sum函数来测试结果。比如我们希望求1到100范围内的素数之和,可以这样调用: print(prime_sum(1, 100)) 输出结果为:1060,即1到100范围内所有素数之和为1060。 总结起来,求素数之和的问题可以通过定义两个函数,一个用于判断素数,一个用于求素数之和来解决。在实际应用中,我们需要根据具体需求来定义函数参数和返回值,并加以测试和优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值