Datawhale - 数据挖掘训练营 - Task3 特征工程

  • 目标:进一步分析特征,处理数据,提取出好的特征(少而精)
  • 内容:各种特征工程以及分析方法

准备工作 - 导入数据

%%导入计算包
import pandas as pd
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
from operator import itemgetter

%%导入数据
train = pd.read_csv('data/train.csv', sep=' ')
test = pd.read_csv('data/testA.csv', sep=' ')
print(train.shape)
print(test.shape)

train.head()  %查看数据
train.columns %查看特征
test.columns

其中,operator模块提供的itemgetter函数用于获取对象的哪些维的数据,参考:https://www.cnblogs.com/zhoufankui/p/6274172.html

1. 异常处理

a. 什么是异常值

异常值也通常被称作离群点,是在数据集中存在的不合理的值,是样本中个别明显偏离其余值的观测值。
https://blog.csdn.net/qq_36874480/article/details/80176756

b. 为什么要处理异常值

异常值的存在会扰乱统计分析与机器学习的结果,使得模型更偏向于对异常值的过拟合,失去泛化能力。
https://blog.csdn.net/jianlin0402/article/details/104682282/

c. 如何检测出异常值

https://blog.csdn.net/qq_36874480/article/details/80176756
https://zhuanlan.zhihu.com/p/103776581
(1)简单统计分析方法:对属性值进行一个描述性(经验)的统计,从而看出哪些值是不合理的

(2)基于高斯分布的异常点检测:根据已有数据集,建立高斯分布的模型,通过新数据和已知分布的差异进行判断是否异常值

(3)基于标准偏差(3δ原则)的异常值检测:如果数据服从正态分布,异常值被定义为一组测定值中与平均值的偏差超过3倍的值

(4)箱型图:根据四分位数,大于或小于设定的上下界的数值即为异常值,详情可参考https://blog.csdn.net/sscc_learning/article/details/78771324?depth_1-utm_source=distribute.pc_relevant.none-task&utm_source=distribute.pc_relevant.none-task
https://blog.csdn.net/clairliu/article/details/79217546?depth_1-utm_source=distribute.pc_relevant.none-task&utm_source=distribute.pc_relevant.none-task

(5)基于(马氏距离,欧式距离)距离:利用聚类的思想,对数据进行聚类,排除距离中心最远的n个点,一般算法:kmeans,knn等

(6)其他高级算法:局部异常因子LOF算法,孤立森林iForest等。

d. 处理方式 - 删除 / 修正填补

https://blog.csdn.net/qq_36874480/article/details/80176756
(1)如果异常值数目较小且不是主要观察目标,直接删除含有异常值的样本。

(2)视为缺失值:利用缺失值处理的方法进行处理

(3)平均值修正:可以用前后两个观测值的平均值修正该异常值

(4)不处理:可以直接在具有异常值的数据集上进行数据建模

e. 异常处理示例代码

%定义了一个函数,该函数利用箱型图可视化进行异常检测,找出异常值并清除,并画出处理前后的箱型图。
def outliers_proc(data, col_name, scale=3):
    """
    用于清洗异常值,默认用 box_plot(scale=3)进行清洗
    :param data: 接收 pandas 数据格式
    :param col_name: pandas 列名
    :param scale: 尺度
    :return:
    """

    def box_plot_outliers(data_ser, box_scale):
        """
        利用箱线图去除异常值
        :param data_ser: 接收 pandas.Series 数据格式
        :param box_scale: 箱线图尺度,
        :return:
        """
        iqr = box_scale * (data_ser.quantile(0.75) - data_ser.quantile(0.25))
        val_low = data_ser.quantile(0.25) - iqr
        val_up = data_ser.quantile(0.75) + iqr
        rule_low = (data_ser < val_low)
        rule_up = (data_ser > val_up)
        return (rule_low, rule_up), (val_low, val_up)

    data_n = data.copy()
    data_series = data_n[col_name]
    rule, value = box_plot_outliers(data_series, box_scale=scale)
    index = np.arange(data_series.shape[0])[rule[0] | rule[1]]
    print("Delete number is: {}".format(len(index)))
    data_n = data_n.drop(index)
    data_n.reset_index(drop=True, inplace=True)
    print("Now column number is: {}".format(data_n.shape[0]))
    index_low = np.arange(data_series.shape[0])[rule[0]]
    outliers = data_series.iloc[index_low]
    print("Description of data less than the lower bound is:")
    print(pd.Series(outliers).describe())
    index_up = np.arange(data_series.shape[0])[rule[1]]
    outliers = data_series.iloc[index_up]
    print("Description of data larger than the upper bound is:")
    print(pd.Series(outliers).describe())
    
    fig, ax = plt.subplots(1, 2, figsize=(10, 7))
    sns.boxplot(y=data[col_name], data=data, palette="Set1", ax=ax[0])
    sns.boxplot(y=data_n[col_name], data=data_n, palette="Set1", ax=ax[1])
    return data_n

输出

Delete number is: 963
Now column number is: 149037
Description of data less than the lower bound is:
count    0.0
mean     NaN
std      NaN
min      NaN
25%      NaN
50%      NaN
75%      NaN
max      NaN
Name: power, dtype: float64
Description of data larger than the upper bound is:
count      963.000000
mean       846.836968
std       1929.418081
min        376.000000
25%        400.000000
50%        436.000000
75%        514.000000
max      19312.000000
Name: power, dtype: float64

在这里插入图片描述

特征归一化/标准化 normalisation

https://zhuanlan.zhihu.com/p/103776581

a. What

normalisation是将数据按比例缩放,使之落入一个小的特定区间。

  • 标准化:转换为标准正态分布
  • 归一化:转换到 [0,1] 区间

b. Why

在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权。

c. How

(1)0-1标准化(传统小型数据采用):将数据的最大最小值记录下来,并通过Max-Min作为基数(即Min=0,Max=1)进行数据的归一化处理:
x = ( x − M i n ) / ( M a x − M i n ) x = (x - Min) / (Max - Min) x=(xMin)/(MaxMin)

(2)Z-score标准化(大量数据采用):是一个分数与平均数的差再除以标准差的过程:
z = ( x − μ ) / σ z=(x-μ)/σ z=(xμ)/σ,其中x为某一具体分数,μ为平均数,σ为标准差,Z值的量代表着原始分数和母体平均值之间的距离,是以标准差为单位计算。在原始分数低于平均值时Z则为负数,反之则为正数。它的数学意义是,一个给定分数距离平均数多少个标准差?
(3)针对幂律分布,可以采用公式: l o g ( 1 + x 1 + m e d i a n ) log(\frac{1+x}{1+median}) log(1+median1+x)

d. 示例代码

# 取 log,在做归一化
from sklearn import preprocessing
min_max_scaler = preprocessing.MinMaxScaler()
data['power'] = np.log(data['power'] + 1) 
data['power'] = ((data['power'] - np.min(data['power'])) / (np.max(data['power']) - np.min(data['power'])))
data['power'].plot.hist()

# 直接做归一化
data['kilometer'] = ((data['kilometer'] - np.min(data['kilometer'])) / 
                        (np.max(data['kilometer']) - np.min(data['kilometer'])))
data['kilometer'].plot.hist()

数据分桶

https://blog.csdn.net/yanqianglifei/article/details/86581300
https://blog.csdn.net/Pylady/article/details/78882220
https://blog.csdn.net/hxcaifly/article/details/84593770

a. What

数据分桶 / 分箱是一种将多个连续值分组为较少数量的“分箱”的方法。

b. Why

分箱主要用于减少次要观察误差的影响。一般在建立分类模型时,需要对连续变量离散化,特征离散化后,模型会更稳定,降低了模型过拟合的风险。

  1. 离散后稀疏向量内积乘法运算速度更快,计算结果也方便存储,容易扩展;
  2. 离散后的特征对异常值更具鲁棒性,如 age>30 为 1 否则为 0,对于年龄为 200 的也不会对模型造成很大的干扰;
  3. LR 属于广义线性模型,表达能力有限,经过离散化后,每个变量有单独的权重,这相当于引入了非线性,能够提升模型的表达能力,加大拟合;
  4. 离散后特征可以进行特征交叉,提升表达能力,由 M+N 个变量编程 M*N 个变量,进一步引入非线形,提升了表达能力;
  5. 特征离散后模型更稳定,如用户年龄区间,不会因为用户年龄长了一岁就变化

*分箱也用于图像处理,通过将相邻像素组合成单个像素,它可用于减少数据量。

c. How

  • 等频分桶:区间的边界值要经过选择,使得每个区间包含大致相等的实例数量
  • 等距分桶:从最小值到最大值之间,均分为 N 等份, 这样, 如果 A,B 为最小最大值, 则每个区间的长度为 W=(B−A)/N , 则区间边界值为A+W,A+2W,….A+(N−1)W
  • 卡方分桶:依赖于卡方检验,具有最小卡方值的相邻区间合并在一起,直到满足确定的停止准则
  • Best-KS 分桶(类似利用基尼指数进行二分类)

d. 示例代码

# 数据分桶 以 power 为例
bin = [i*10 for i in range(31)]
data['power_bin'] = pd.cut(data['power'], bin, labels=False)
data[['power_bin', 'power']].head()

缺失值处理

https://zhuanlan.zhihu.com/p/33996846
https://blog.csdn.net/lujiandong1/article/details/52654703

a. Why

缺失值本身是包含信息的。有些时候这些信息很重要,增加了系统的不确定性,可能导致不可靠的输出,所以要对缺失值进行合理处理。

b. How

  • 不处理(针对类似 XGBoost 等树模型);
  • 删除(缺失数据太多);
  • 插值补全,包括均值/中位数/众数/建模预测/多重插补/压缩感知补全/矩阵补全等;
  • 分箱,缺失值一个箱;
  • 更多填充方式参考https://blog.csdn.net/lujiandong1/article/details/52654703

特征构造

https://zhuanlan.zhihu.com/p/45749927
https://www.jianshu.com/p/b6abbd3f80be

a. What

通过特征转换,提取一组特征,或选择一组特征作为特征子集。

b. Why

发现更有意义的特征属性,剔除不相关或者冗余的特征,减少特征纬度,以此减少模型训练的时间,提高模型的精确度。

c. How

  • (1)构造统计量特征,报告计数、求和、比例、标准差等;
  • (2)时间特征,包括相对时间和绝对时间,节假日,双休日等;
  • (3)地理信息,包括分箱,分布编码等方法;
  • (4)非线性变换,包括 log/ 平方/ 根号等;
  • (5)特征组合,特征交叉;
  • (6)仁者见仁,智者见智。

d. 示例代码

# 训练集和测试集放在一起,方便构造特征
train['train']=1
test['train']=0
data = pd.concat([train, test], ignore_index=True, sort=False)

# 对应方法(1)构造统计量特征
# 使用时间:data['creatDate'] - data['regDate'],反应汽车使用时间,一般来说价格与使用时间成反比
# 不过要注意,数据里有时间出错的格式,所以我们需要 errors='coerce'
data['used_time'] = (pd.to_datetime(data['creatDate'], format='%Y%m%d', errors='coerce') - 
                            pd.to_datetime(data['regDate'], format='%Y%m%d', errors='coerce')).dt.days
data['used_time'].isnull().sum()


# 对应方法(3)
# 从邮编中提取城市信息,因为是德国的数据,所以参考德国的邮编,相当于加入了先验知识
data['city'] = data['regionCode'].apply(lambda x : str(x)[:-3])

# 对应方法(1)
# 计算某品牌的销售统计量,同学们还可以计算其他特征的统计量
# 这里要以 train 的数据计算统计量
train_gb = train.groupby("brand")
all_info = {}
for kind, kind_data in train_gb:
    info = {}
    kind_data = kind_data[kind_data['price'] > 0]
    info['brand_amount'] = len(kind_data)
    info['brand_price_max'] = kind_data.price.max()
    info['brand_price_median'] = kind_data.price.median()
    info['brand_price_min'] = kind_data.price.min()
    info['brand_price_sum'] = kind_data.price.sum()
    info['brand_price_std'] = kind_data.price.std()
    info['brand_price_average'] = round(kind_data.price.sum() / (len(kind_data) + 1), 2)
    all_info[kind] = info
brand_fe = pd.DataFrame(all_info).T.reset_index().rename(columns={"index": "brand"})
data = data.merge(brand_fe, how='left', on='brand')

特征筛选

a. Why

发现更有意义的特征属性,减少模型训练时间,提高模型精度。

b. How

  • (1)过滤式(filter):先对数据进行特征选择,然后在训练学习器,常见的方法有 Relief/方差选择发/相关系数法/卡方检验法/互信息法;
  • (2)包裹式(wrapper):直接把最终将要使用的学习器的性能作为特征子集的评价准则,常见方法有 LVM(Las Vegas Wrapper) ;
  • (3)嵌入式(embedding):结合过滤式和包裹式,学习器训练过程中自动进行了特征选择,常见的有 lasso 回归;

降维

a. Why

减少特征纬度,以此减少模型训练的时间,提高模型的精确度。

c. How

  • (1)PCA/ LDA/ ICA
  • (2)特征选择
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值