我现在也是正在学习机器学习,在学习的时候其实受过不少人指导的,现在机器学习非常火热,但其实机器学习理论已经有半个世纪以上的历史了,所以其实市面上很多学习的数目以及一些其他的引导方法。博主现在知道的几本比较好的书本,它们分别是 《统计学习方法 --李航 著 --清华大学出版社》、
《机器学习 --周志华著 --清华大学出版社》(被称为西瓜书)、
《模式识别与机器学习 --马春鹏 译》(对应的英文原版为《Pattern Recognition and Machine Learning 》,英文原版的作者为微软剑桥研究院实验室主任 Christopher Bishop)、
《机器学习实战 --李锐 译》
我觉得,自学机器学习确实需要花比较多的功夫,而且机器学习书本基本上是铺天盖地的理论,比较枯燥,即使以上这些书举了比较生动的例子,有些时候,还是非常难懂。机器学习理论,属于一种体系,这么多年来,不断被完善扩充,所以我们现在要面对的是前辈们总结的经验而成的书,知识量是非常大的。
现在来说说学习顺序吧,上面的几本书其实现在在京东、淘宝之类的书店里卖的挺火的,一方面这些书籍写的确实很好,另一方面,对于入门者来说,这些书的体系比较完善,深度适中,其实不是初学者,阅读这几本书也挺有用的。
我假设初学者是有基本的线性代数理论和概率理论的知识体系的。
对于初学者,我推荐的学习顺序是
1,《机器学习 --周志华》
2,《统计学习方法 --李航》
3,《机器学习实战 -李锐》
4,《模式识别与机器学习》
下面我来说说理由,
《机器学习 -周志华》这本书它可以分为两大部分:第一部分为第1