python自定义数据集并展示

该文介绍了如何在Python中利用PyTorch框架创建自定义的彩色图像数据集。通过定义一个继承自`torch.utils.data.Dataset`的类,实现了读取图像和标签、数据预处理等功能。此外,还展示了如何使用DataLoader进行批量处理,并对图像进行可视化展示。
摘要由CSDN通过智能技术生成

 首先,我自己创建的彩色图像数据集是这样的:

 标签是这样的:

 

#本文引荐了文章:http://t.csdn.cn/gkVNC;并作了注释与修改
#导入库
import os
import torch
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from torchvision.io import read_image
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
from torchvision import transforms

#创建自定义数据集类
class Custom_Dataset(Dataset):
    #函数,设置图像集路径索引、图像标签文件读取
    def __init__(self, img_dir, img_label_dir, transform=None):
        super().__init__()
        self.img_dir = img_dir
        self.img_labels = pd.read_csv(img_label_dir)
        self.transform 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值