【日常学习】【背包DP】codevs1155 金明的预算方案题解

题目来源:2006NOIPTG

题目描述 Description

金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间。更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过N元钱就行”。今天一早金明就开始做预算了,他把想买的物品分为两类:主件与附件,附件是从属于某个主件的,下表就是一些主件与附件的例子:

<dl><dd> <colgroup><col width="66"/> <col width="118"/> </colgroup>

主件

附件

电脑

打印机,扫描仪

书柜

图书

书桌

台灯,文具

工作椅

</dd></dl>

如果要买归类为附件的物品,必须先买该附件所属的主件。每个主件可以有0个、1个或2个附件。附件不再有从属于自己的附件。金明想买的东西很多,肯定会超过妈妈限定的N元。于是,他把每件物品规定了一个重要度,分为5等:用整数1~5表示,第5等最重要。他还从因特网上查到了每件物品的价格(都是10元的整数倍)。他希望在不超过N元(可以等于N元)的前提下,使每件物品的价格与重要度的乘积的总和最大。

设第j件物品的价格为v[j],重要度为w[j],共选中了k件物品,编号依次为j1j2,……,jk,则所求的总和为:

v[j1]*w[j1]+v[j2]*w[j2]+ +v[jk]*w[jk]。(其中*为乘号)

请你帮助金明设计一个满足要求的购物单。

输入描述 Input Description

1行,为两个正整数,用一个空格隔开:

N m

(其中N<32000)表示总钱数,m<60)为希望购买物品的个数。)

从第2行到第m+1行,第j行给出了编号为j-1的物品的基本数据,每行有3个非负整数

v p q

(其中v表示该物品的价格(v<10000),p表示该物品的重要度(1~5),q表示该物品是主件还是附件。如果q=0,表示该物品为主件,如果q>0,表示该物品为附件,q是所属主件的编号)

输出描述 Output Description

只有一个正整数,为不超过总钱数的物品的价格与重要度乘积的总和的最大值(<200000

样例输入 Sample Input

1000 5

800 2 0 

400 5 1

300 5 1

400 3 0

500 2 0

样例输出 Sample Output

2200

这道题目是一道典型的背包问题,但是它是有依赖的背包。

由于状态并不多(只有60件物品,且当年数据真是渣= =)我们可以用朴素的方法枚举这四种情况:只选主件,主+副1,主+副2,三件全选,比较得出最优解即可

我先放上这道题目的代码吧

//codevs1155 金明的预算方案 背包DP(依赖背包)
//copyright by ametake
#include
   
   
    
    
#include
    
    
     
     
#include
     
     
      
      
using namespace std;

const int maxn=32000+10;
const int maxm=60+5;
int v[maxm][3],w[maxm][3];//v表示价格,w表示重要性 ]
int f[maxn];
int n,m,a,p,q;

int main()
{
    memset(v,0,sizeof(v));
    memset(w,0,sizeof(w));
    scanf("%d%d",&n,&m);//n is total money,m is items' number
    for (int i=1;i<=m;i++)
    {
        scanf("%d%d%d",&a,&p,&q);
        if (!q)
        {
               v[i][0]=a;
               w[i][0]=p*a;
        }
        else if (v[q][1]==0&&w[q][1]==0)
        {
             v[q][1]=a;
             w[q][1]=p*a;
        }
        else
        {
            v[q][2]=a;
            w[q][2]=p*a;
        }
    }
    for (int i=1;i<=m;i++)
    {
        if (w[i][0]!=0)
        for (int j=n;j>=v[i][0];j--)
        {
            f[j]=max(f[j],f[j-v[i][0]]+w[i][0]);
            if (j>=v[i][0]+v[i][1])//注意是大于等于
            f[j]=max(f[j],f[j-v[i][0]-v[i][1]]+w[i][0]+w[i][1]);
            if (j>=v[i][0]+v[i][2])
            f[j]=max(f[j],f[j-v[i][0]-v[i][2]]+w[i][0]+w[i][2]);
            if (j>=v[i][0]+v[i][1]+v[i][2])
            f[j]=max(f[j],f[j-v[i][0]-v[i][1]-v[i][2]]+w[i][0]+w[i][1]+w[i][2]);
        }
    }
    printf("%d\n",f[n]);
    return 0;
}

     
     
    
    
   
   

读背包九讲我们可以发现,如果一件物品可以有很多附件,这样做的复杂度会非常大。这种情况下怎么办呢?

事实上,我们可以对于每个物品组先进行一次组内01背包DP,求出组内各种情况的最优方案。也可运用之前提到的“一个简单有效的优化”,即用物美价廉代替贵而不实德物品。

对于附件又有附件这种树状结构的背包,实际相当于树形DP,在这里先不予讨论。

背包的学习,依然长路漫漫。

OI的历史,又翻过了一页……


(好把上面那种奇怪的怀旧情怀是什么情况= =明明那么老的东西了···)


——待到秋来九月八,我花开后百花杀。 



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值