题目描述 Description
有n堆石子排成一列,每堆石子有一个重量w[i], 每次合并可以合并相邻的两堆石子,一次合并的代价为两堆石子的重量和w[i]+w[i+1]。问安排怎样的合并顺序,能够使得总合并代价达到最小。
输入描述 Input Description
第一行一个整数n(n<=100)
第二行n个整数w1,w2...wn (wi <= 100)
输出描述 Output Description
一个整数表示最小合并代价
样例输入 Sample Input
4
4 1 1 4
样例输出 Sample Output
18
区间DP与传统DP不同,既不能顺推也不能倒推,区间DP划分阶段是按区间的长短划分,然后按起点枚举状态进行DP
本题与合并果子的区别在于,只能合并相邻的两堆,这就导致贪心策略是错误的。
核心代码为:
for (int p=1;p<n;p++)
{
for (int i=1;i<=n-p;i++)
{
int j=i+p;
f[i][j]=maxint;
for (int k=i;k<j;k++)
{
f[i][j]=min(f[i][j],f[i][k]+f[k+1][j]);
}
f[i][j]+=s[j]-s[i-1];
}
}
请注意,这个递推的复杂度为O(n³)
当然,也可以采用记忆化搜索的方案,Pas核心代码如下function dfs(i,j:longint):longint; //合并i..j
var k:longint;
begin
if i=j then exit(0); // 初始f[i,j]:=0;
if f[i,j]>0 then exit(f[i,j]); //已经求过
f[i,j]:=maxlongint;/ /为求最小值准备
for k:=i to j-1 do
f[i,j]:=min(f[i,j],
dfs(i,k)+dfs(k+1,j)+s[j]-s[i-1]);
exit(f[i,j]); // dfs=f[i,j] 返回函数值
end;
那么,我们直接上代码
//codevs1048 石子归并 区间DP
//copyright by ametake
#include
#include
#include
using namespace std;
const int maxn=100+10;
const int maxint=0x3f3f3f3f;
int s[maxn],f[maxn][maxn];
int x,n;
int main()
{
scanf("%d",&n);
for (int i=1;i<=n;i++)
{
scanf("%d",&x);
s[i]=s[i-1]+x;
}
for (int p=1;p
——江头未是风波恶,别有人间行路难